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Outline

» Overview of DUNE's Detectors
 DUNE's Physics Program

» Far Detector Modules

* not covered: Beam and Near Detectors
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LBNF/DUNE Overview

Lead, South Dakota

Batavia, lllinois

Sanford
Underground - >
Research — - gy, . - SIS 9
Facility

Fermilab

Powerful neutrino beam from Fermilab. Initial PIP-Il design: 1.2 MW Protons on Target.
Upgradeable to 2.4 MW.
Dominantly v, in forward horn current mode, v,, in reverse horn current mode

Broad-band energy spectrum peaking at ~2 GeV, near the first oscillation maximum
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DUNE's Physics Goals

* Three primary goals. Detector design requirements flow from these:

Test whether CP is violated in the neutrino sector. Measure neutrino
oscillation parameters with beam neutrinos: 6p. Determine mass ordering.

Observe neutrinos from supernova bursts within the galaxy and its satellites

Test for nucleon decay

Many additional physics topics (just a few here, not an exhaustive list)

neutron-antineutron oscillations

Atmospheric neutrino contributions to oscillation measurements
Searches for BSM phenomena

Test the 3-flavor oscillation model — search for non-standard interactions
Solar neutrino physics

Tau neutrino appearance
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Unoscillated Beam Spectra @ FD

Forward Horn Current Reverse Horn Current
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Oscillated, Reconstructed Expected
Spectra
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Underground Facilities at SURF

Long-Baseline Neutrino Facility .
South Dakota Site Neutrinos from
Fermi National

Accelerator Laboratory
in lllinois

Ross Shaft
1.5 km to surface

Facility
and cryogenic
support systems

One of four
detector modules of the
Deep Underground

Neutrino Experiment
4850 Level of

Sanford Underground
Research Facility

Depth = 4300 MWE
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One of Four Far Detector Modules

Deep Underground Neutrino Experiment
One of four detector modules in South Dakota .
Cryogenic systems

Detector electronics

Neutrinos from
Fermilab in lllinois

Detector located
1.5 kilometers
underground at
Sanford Lab

N I (111!} o

| i
Each module will be filled
with 17,000 tons of argon,
cooled to minus 184°C

10 kt fiducial
vertex location
in beam events
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Cross Section View of a Single-Phase FD Module

Ground Plane

Cryostat Structure
Cryostat Insulation
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Production of Charge and Light in a LArTPC
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Recombination in LAr
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J. Thomas and D.A. Imel, Recombination of electron-ion pairs in liquid argon 0 0.5 1 1.5 2
and liquid xenon, Phys. Rev. A36 (1987) 614. - 8 (kv / ) -
cm

S. Amoruso, et al., Study of electron recombination in liquid argon
with the ICARUS TPC, NIM A523 (2004) 275.

Solid lines are the recombination factor for charge (charge collected at finite field divided
16 33. G. Bakale, U. Sowada, and W.F. Schmidt, by charge collected at infinite field) [31, 32]. Dashed lines are the light recombination
Effect of electric field on electron attachment to SF., N:O, K . . .
and «in liquid argon and xenon, J. Phys. Chem. 80 (1976) 2556. factor (light collected at field divided by light collected at zero field) [43]. The numbers
labeling the curves are the specific energy loss (dE/dx) in units of mip.
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Electron Drift Velocity in LAr

Electron Drift Velocity in LAr
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An Anode Plane Assembly (APA)

2.295m

Pairs of APAs are hung vertically

Electronics on top of the top APA, on the bottom of the bottom APA

Electronics are in the liquid argon — and are cold

Four wire planes on each side — Grid (parallel to Collection) U, V, and Collection

U and V plane wires wrap around front to back
Grounded mesh behind the collection plane wires

Photon detectors between the meshes

Photon Detectors
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achine

An APA on the Winding M
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Anode-Plane Bias Voltages

X wires, +820V

V wires, OV

Potential [V]

Distance along drift direction [mm] 20

30

Figure 3-3: A surface plot of the electric potential distribution near the wire planes. The voltages

on the wire planes are biased to provide complete electron transparency through the first three
planes, and complete collection on the fourth plane.

Chosen to maintain
transparency

Field between wire

planes is adjustable —
Stronger field --> faster
drift, and higher-frequency
signal shapes
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Signal Shapes and Deconvolution

ADC Waveform with 2D DUNE Wire Plane Model
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ProtoDUNEs at CERN

Two large-scale prototypes — ProtoDUNE-SP (NP04) and ProtoDUNE-DP (NP02)

Located in the EHN1 building at CERN on the Prévessin site

Low-energy beamline: 0.5 to 6 GeV momentum-selected mixture of
electrons, pions, muons, protons, kaons

ProtoDUNE-SP uses
full-scale FD
components:

APA, Cathode plane
components, etc.

7.2 x 7.0 x 6.1 m3 active
volume of LAr in
ProtoDUNE-SP
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ProtoDUNE-SP Beam Events

DUNE:ProtoDUNE-SP Run 5826 Event 83959
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A Cosmic-Ray Shower in ProtoDUNE-SP
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ProtoDUNE-SP Signal-to-Noise
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10 | | ~
: -------- U Plane, Raw :
- 08 __ -------- V Plane, Raw __
% B L I Rt Collection Plane, Raw ] ProtoDUNE-SP
-] B U Plane, Noise-filtered 7]
506 |- — performance paper
Lt — V Plane, Noise-filtered ]
q>,) — Collection Plane, Noise-filtered ]
= 04 — —
© B i
) B i
o i i
0.2 I _|
0.0 B . - | | == .l ———— i
0 50 . 100 . 150
Angle-Corrected Signal-to-Noise Ratio
TPC+CE
Noise (C) 550 e, (I) 650 e ENC (raw) < 1000 e ENC
Signal-to-noise (SNR) (C)48.7, (1) 21.2 (Ww/CNR)
21 June 16, 2021 Tom Junk | DUNE Detectors £& Fermilab 4\



ProtoDUNE Stopping Beam Muons dE/dx

DUNE ProtoDUNE SP Stopping Beam Muons - Data (1 GeV/c)
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ProtoDUNE dE/dx Protons vs. Muons
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Isolated Blips in ProtoDUNE-SP

A 1% candidate

DUNE:ProtoDUNE-SP Run 5779 Event 12360
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LAr Excels in Low-Energy Particles

Raw Reconstructed

» Delta rays = -

* 39Ar E T i

* Nuclear .- |
de-excitation i T
photons e e

ArgoNeuT Collab.,
Phys. Rev. D 99, 012002 (2019)

5 . 5
asf- s 45
- (-]
A 2 4
E 3
35— s 3.5
E &
s = 3
= E B 25
25— s
g F w
|§ 2 2 2
15f- 315
£ 2
1= § 1
osf- T o5
7 MR I IR I R R R % | 0 0
20 60 80 100 120 140 0 0.5 15 2 25 3 3.5 45 5
Collected Charge (electrons) True Electron Energy (MeV)

FIG. 5. Left: Energy deposited vs collected charge. Red curve indicates fit used to perform energy calculations from collected
charge. Right: Reconstructed energy vs true electron energy using the charge method for a sample of simulated electrons with
energies between 0 and 5 MeV. Events where the electron was not detectable are excluded.
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Arb. Units

Using 3°Ar to Calibrate Electron Attachment Rate

ar
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Modified Box model recombination
parameter variation:

dE
R =In(a +¢) /§, where § = B —/pE qrif
and f = 0.212
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Scintillation in Liquid Argon

LAr scintillates very brightly —at 127 nm (vacuum ultraviolet)

Also significant scintillation in the IR

About 24,000 photons per MeV of energy deposited in LAr

1/3 of the light is prompt light (7=6 ns) and 2/3 is late light (7=1.5 us)

Excited Excimer , ( Ar \ Scintillation Prompt |Ight

Formation ' Photons
from singlet-state
excimer,
/T [

lonized Molecule Late light from

Formati [
ormation \\5__ ( Beas ki triplet state.

lonized Electron

Excitation

lonization

Scintillation Light Transport in LAr
* LAristransparent to its own scintillation light, but impurities (e.g. N,) absorb it
* Rayleigh scattering length ~60 cm
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Photon Detectors

PD
Modules
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X-ARAPUCA Photon Detectors

liquid argon

scmtlllatlon
127 nm

p-terphenyl
TP wavelength shifter
350 nm Dichroic Filter Sensitive to light coming from either side

‘[‘\\ LAr
430 nm

_‘// WLS plate | eijener-286
LAr

i Module Connec’uon

i Active Ganging PCBs
i (two each side)

SiPM

Reflective surface

Holes for connections to
Trace routing boards

Not to Scale_ Trace routing PCBs

(One removed for clarity)
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An Arapuca
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ProtoDUNE-SP S-ARAPUCA Efficiency

3.0

Efficiency [%]
- - N A
o ()] o (63
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0.0
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B Electrons ]
— g 8 ——2.0GeV/c —
B 8 8 g g 8 - 3.0GeV/ic
— —— 6.0GeV/ic —]
B —— 7.0GeVic
i S
: | 1 | 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | :
2 4 6 8 10 12
Cell #

* Much higher efficiency than the dip-coated light guides used elsewhere

in ProtoDUNE-SP

* ProtoDUNE-SP has an earlier version of ARAPUCA — instead of WLS plate,
there was a coating of WLS material on the inner surfaces.
 X-ARAPUCA expected to have higher efficiency than S-ARAPUCA. Prototypes

have 3.5% efficiency.
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Timing Resolution and Physics

Resolution requirement: better than 1 ys. Easily satisfied. About 10
ns resolution from double-pulse flasher response, dominated by
digitization discreteness (6.67 ns sampling time). (double-pulse timing
width is 14 ns)

*+1pus timing gives mm precision on relationship between charge arrival
time and distance

Important for supernova burst events

- No accelerator beam time

- Calorimetry affected by electron attachment during drift — can correct for
this if drift time is known

Important for nucleon decay:
- vertex fiducialization

May contribute to event calorimetry

32
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S-ARAPUCA Performance in ProtoDUNE-SP

* This is only a small sample — only two bars out of 60 were
ARAPUCAs. The others were WLS+light guides.

DUNE:ProtoDUNE-SP ARAPUCA 04 DUNE:ProtoDUNE-SP ARAPUCA
' ! ! ! ! ! | ! ! ! | ! ! ! . T T T T T T T T T T T T
- Electrons . A ! ! ! i
800 ™ 3 Detected photons i i Electrons .
- Linear Fit . 03 i ¢ Detected photons -
600 = x?/ ndf 3.14/5 - - ' - —— Fit function Eq.(7.1) :
§ [ Prob 0.68 ) g [ x2/ndf  513/4 §
8 [ P -84x 14 _ Aﬁoz - Prob 027
400 P 102.1= 1.5 7 z ko 0.062 = 0.003 -
~ B ] \\/Z — k1 0099 *+ 0008 ]
i i St k,  0.057 = 0.009 .
200 [— — 0.1 5
0 : : ; : | i | | | ]
0 4 8 0.0 EE— EE— EE—
(E,)  [GeV] 0 2 4 8
beam < Ee >beam [GeV]

Estimated FD yield if all photon detectors are OE z ki  ky

el s — = O — P —

ARAPUCA-S: 1.9 Photons/MeV for scintillation at the E 0 VE E

cathode. Almost 4x the requirement.
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Supernova Bursts

Expect of order 1000 v.CC interaction on %°Ar in DUNE
Arrival times up to 100 seconds from onset. Most come early, but it's model dependent

SN Neutrino Signal

Galaxy Edge LMC Andromeda
[72] L T T o =
g 5 -
i & |- 0.025—
3] < B
E & © L
2100 Fe
£ :E 8 > L
g 10° E -5, |_|C_ -
é - 2ls B
2 o @ L
EL Z |€0.015—
- si3 [
10 - B
= > -8 —
N 52 001
1= G518 -
= T3 N
107 52 I
g 5 /80.005—
10'2 1 1 1 | | II 1 1 1 | | II 1 1 1 | | Lt (3 :
1 10 . 10? 10° — i
Distance to supernova (kpc) z L

50 60
True v, energy

SNB data are very rare and precious. Need to go as low in threshold as possible.
Full waveform readout for ~100s on SNB trigger (60 interaction threshold)
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A Typical SNB Neutrino Interaction
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Supernova Burst Neutrino Pointing

Large dispersion in electron
direction with respect to
incoming neutrino

Reconstruction resolution and
front-back ambiguity broken
by looking for Compton-scatter
blips.

Cos(Theta)

Overall pointing
resolution is about 4.5
degrees

Phi (rad)
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Muon Stopping Power in LAr
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Cumulative Energy Deposition From
a 20 TeV Muon

Single event aggregate energy deposition

Muon travels the length < 600:_
of a FD module in this simuation. 500:_
Energy loss is very spiky! 4003_
* Bremsstrahlung processes -
dominate 300
Muon is MIP-like between 200
showers. ("Fermi Plateau") N
100
_lllllllllllllllllllllllll60Meters

0 2000 4000 6000 8000 10000 12000
Wire Number

K. Ingles's thesis
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A 10 TeV Showering Muon in a LArTPC

v . = =
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High-Energy Muon Energy Measurement

Average energy on a wire Log of RMS of energy on a wire
s 132— = 132—
B ”E_ = 112—
Best-case scenario: 10F- tof-
muons traverse a DUNE :: ::
FD module horizontally 7E 7E
(L~ 60 meters). SE o
5 5
43— 45——_.- | PR I S T
Resolution: about a factor ° ° Log(o[Gev]
Of 2.5, Shorter tracks ) _ Log of RMS of non-MIP wires
sample less radiation and 2 ¢ g "°F
e 12— % 12:— ——
thus have worse resolutior £ |- J E =
102— 102—
of of-
8;— 8;—
7;— 7;—
J. Singh, o oF
. 5 5F
New Perspectives, 2020 £ £
—; -6 —& -2 0 —; -6 - -2 .(1)1111..11.

Exploring variables studied
by K. Ingles
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Multiple FD Module Designs

« DUNE TDR describes a dual-phase design
- Vertical drift to a liquid-gas interface.
- Same cryostat as single-phase, so max drift = 12 meters
- Large charge gain in gas GEM-like layer (LEM)
- Photon detectors at the bottom
- Prototyped at CERN: ProtoDUNE-DP (NPO02)
- Design will not be used
 Vertical-drift single-phase design
- Charge readout planes on top and bottom. Max drift=6 meters
- strips on perforated printed-circuit boards for charge readout

- Photon detectors around field cage and cathode. Much larger coverage than
horizontal drift.

- Very promising — design under review
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Multiple FD Module Designs

* Fourth module — "Module of Opportunity”
- Horizontal or vertical drift single-phase LArTPC
- OR Pixel readout with integrated photon collection
- OR Water Cherenkov?
- OR Liquid Scintillator?
- OR

DUNE Module of Opportunity Workshop, November 2019
https://indico.fnal.gov/event/21535/timetable/?view=standard
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Summary
» LArTPC technology is maturing

* The DUNE Far Detector provides fine-grained spatial and
energy measurements over a large volume

 The DUNE Far Detector is not nearly as big or as massive as
lceCube

« DUNE's focus is on beam neutrino physics, SNB and nucleon
decay

 DUNE has many unique capabilities and a broad physics
program

 Let's make it broader!

g
(=
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A Neutrino Scatter in ArgoNeuT

Time

Wire Number
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DUNE Overview

Deep Underground Neutrino Experiment
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LArTPC Charge Measurement

Cathode
Plane
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Anode wire planes:
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SNB neutrino arrival times

40 kton argon, 10 kpc
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Cross Section View of a Single-Phase FD Module
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