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Outline
• Overview of DUNE's Detectors
• DUNE's Physics Program
• Far Detector Modules
• not covered: Beam and Near Detectors
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LBNF/DUNE Overview
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Lead, South Dakota
Batavia, Illinois

Powerful neutrino beam from Fermilab.  Initial PIP-II design: 1.2 MW Protons on Target.
Upgradeable to  2.4 MW.
Dominantly 𝜈! in forward horn current mode, �̅�! in reverse horn current mode
Broad-band energy spectrum peaking at ~2 GeV, near the first oscillation maximum



DUNE's Physics Goals
• Three primary goals.  Detector design requirements flow from these:
- Test whether CP is violated in the neutrino sector.  Measure neutrino 

oscillation parameters with beam neutrinos: 𝛿CP. Determine mass ordering. 

- Observe neutrinos from supernova bursts within the galaxy and its satellites

- Test for nucleon decay

• Many additional physics topics (just a few here, not an exhaustive list)
- neutron-antineutron oscillations

- Atmospheric neutrino contributions to oscillation measurements

- Searches for BSM phenomena

- Test the 3-flavor oscillation model – search for non-standard interactions

- Solar neutrino physics 

- Tau neutrino appearance
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Unoscillated Beam Spectra @ FD
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Oscillated, Reconstructed Expected 
Spectra
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Energy range of
interest for beam
events:

0.5 GeV to 8 GeV

Detector is designed
to do this physics well.

𝝂eCC reco energy resolution:
13%

𝝂𝜇CC reco energy resolution:
18%

Resolutions are current in the TDR:
expect improvements as time passes



Underground Facilities at SURF
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Depth = 4300 MWE



One of Four Far Detector Modules
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10 kt fiducial
vertex location
in beam events



Cross Section View of a Single-Phase FD Module
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Production of Charge and Light in a LArTPC
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Recombination in LAr
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Nominal DUNE FD
electric field strength = 500 V/cm

J. Thomas and D.A. Imel, Recombination of electron-ion pairs in liquid argon 
and liquid xenon, Phys. Rev. A36 (1987) 614. 

S. Amoruso, et al., Study of electron recombination in liquid argon 
with the ICARUS TPC, NIM A523 (2004) 275. 

16 33. G. Bakale, U. Sowada, and W.F. Schmidt, 
Effect of electric field on electron attachment to SF6, N2O, 
and O2 in liquid argon and xenon, J. Phys. Chem. 80 (1976) 2556.



Electron Drift Velocity in LAr
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An Anode Plane Assembly (APA)
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• Pairs of APAs are hung vertically
• Electronics on top of the top APA, on the bottom of the bottom APA
• Electronics are in the liquid argon – and are cold
• Four wire planes on each side – Grid (parallel to Collection) U, V, and Collection
• U and V plane wires wrap around front to back
• Grounded mesh behind the collection plane wires
• Photon detectors between the meshes 



An APA on the Winding Machine
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Anode-Plane Bias Voltages
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Chosen to maintain
transparency

Field between wire
planes is adjustable –
Stronger field --> faster
drift, and higher-frequency
signal shapes



Signal Shapes and Deconvolution
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ProtoDUNEs at CERN
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Two large-scale prototypes – ProtoDUNE-SP (NP04) and ProtoDUNE-DP (NP02)
Located in the EHN1 building at CERN on the Prévessin site
Low-energy beamline:  0.5 to 6 GeV momentum-selected mixture of

electrons, pions, muons, protons, kaons

ProtoDUNE-SP uses
full-scale FD
components:
APA, Cathode plane
components, etc.

7.2 x 7.0 x 6.1 m3 active
volume of LAr in
ProtoDUNE-SP



ProtoDUNE-SP Beam Events
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0.5 GeV Positron Candidate 6 GeV Positron Candidate



A Cosmic-Ray Shower in ProtoDUNE-SP
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ProtoDUNE-SP Signal-to-Noise
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ProtoDUNE Stopping Beam Muons dE/dx
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ProtoDUNE dE/dx Protons vs. Muons
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Isolated Blips in ProtoDUNE-SP
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A π0 candidate



LAr Excels in Low-Energy Particles
• Delta rays
• 39Ar
• Nuclear

de-excitation
photons
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ArgoNeuT Collab.,
Phys. Rev. D 99, 012002 (2019)

Raw Reconstructed



Using 39Ar to Calibrate Electron Attachment Rate
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Scintillation in Liquid Argon
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• LAr scintillates very brightly – at 127 nm (vacuum ultraviolet)
• Also significant scintillation in the IR
• About 24,000 photons per MeV of energy deposited in LAr
• 1/3 of the light is prompt light (𝜏=6 ns) and 2/3 is late light  (𝜏=1.5 µs)

Prompt light
from singlet-state
excimer,
Late light from
triplet state.

• LAr is transparent to its own scintillation light, but impurities (e.g. N2) absorb it
• Rayleigh scattering length ~60 cm

Scintillation Light Transport in LAr



Photon Detectors
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X-ARAPUCA Photon Detectors
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An Arapuca
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ProtoDUNE-SP S-ARAPUCA Efficiency
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• Much higher efficiency than the dip-coated light guides used elsewhere 
in ProtoDUNE-SP
• ProtoDUNE-SP has an earlier version of ARAPUCA – instead of WLS plate,
there was a coating of WLS material on the inner surfaces.
• X-ARAPUCA expected to have higher efficiency than S-ARAPUCA.  Prototypes

have 3.5% efficiency.



Timing Resolution and Physics
• Resolution requirement: better than 1 µs.   Easily satisfied.   About 10 

ns resolution from double-pulse flasher response, dominated by 
digitization discreteness (6.67 ns sampling time).  (double-pulse timing 
width is 14 ns)

• ±1µs timing gives mm precision on relationship between charge arrival 
time and distance

• Important for supernova burst events 
- No accelerator beam time

- Calorimetry affected by electron attachment during drift – can correct for 
this if drift time is known

• Important for nucleon decay:
- vertex fiducialization

• May contribute to event calorimetry
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S-ARAPUCA Performance in ProtoDUNE-SP

• This is only a small sample – only two bars out of 60 were 
ARAPUCAs.  The others were WLS+light guides.
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Estimated FD yield if all photon detectors are
ARAPUCA-S: 1.9 Photons/MeV for scintillation at the
cathode.  Almost 4x the requirement.



Supernova Bursts
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• Expect of order 1000 𝝂eCC interaction on 40Ar in DUNE
• Arrival times up to 100 seconds from onset.   Most come early, but it's model dependent

• SNB data are very rare and precious.  Need to go as low in threshold as possible.
• Full waveform readout for ~100s on SNB trigger (60 interaction threshold)



A Typical SNB Neutrino Interaction
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𝝂eCC interaction on 40Ar

10.25 MeV Electron
Deposits charge on 12
collection-plane wires

Isolated blip from nuclear
de-excitation photons

These blips can help distinguish SNB
interactions from backgrounds
• radiologicals
• neutron interactions
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Supernova Burst Neutrino Pointing
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Large dispersion in electron
direction with respect to
incoming neutrino

Reconstruction resolution and
front-back ambiguity broken
by looking for Compton-scatter
blips.

Overall pointing
resolution is about 4.5
degrees



Muon Stopping Power in LAr
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K. Ingles



Cumulative Energy Deposition From 
a 20 TeV Muon
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60 Meters

Muon travels the length
of a FD module in this simuation.

Energy loss is very spiky!
• Bremsstrahlung processes

dominate

Muon is MIP-like between
showers. ("Fermi Plateau")

K. Ingles's thesis



A 10 TeV Showering Muon in a LArTPC
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From Kevin Ingles's
Thesis

GEANT4 energy
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High-Energy Muon Energy Measurement

June 16, 2021 Tom Junk | DUNE Detectors 40

J. Singh,
New Perspectives, 2020
Exploring variables studied
by K. Ingles

Best-case scenario:
muons traverse a DUNE
FD module horizontally
(L~ 60 meters).

Resolution: about a factor
of 2.5.  Shorter tracks
sample less radiation and
thus have worse resolution.



Multiple FD Module Designs
• DUNE TDR describes a dual-phase design
- Vertical drift to a liquid-gas interface.  

- Same cryostat as single-phase, so max drift = 12 meters

- Large charge gain in gas GEM-like layer (LEM)

- Photon detectors at the bottom

- Prototyped at CERN:  ProtoDUNE-DP  (NP02)

- Design will not be used

• Vertical-drift single-phase design

- Charge readout planes on top and bottom.  Max drift=6 meters

- strips on perforated printed-circuit boards for charge readout

- Photon detectors around field cage and cathode.  Much larger coverage than 
horizontal drift.

- Very promising – design under review

June 16, 2021 Tom Junk | DUNE Detectors 41



Multiple FD Module Designs
• Fourth module – "Module of Opportunity"
- Horizontal or vertical drift single-phase LArTPC
- OR Pixel readout with integrated photon collection
- OR Water Cherenkov?
- OR Liquid Scintillator?
- OR

DUNE Module of Opportunity Workshop, November 2019

https://indico.fnal.gov/event/21535/timetable/?view=standard 
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Summary
• LArTPC technology is maturing
• The DUNE Far Detector provides fine-grained spatial and 

energy measurements over a large volume
• The DUNE Far Detector is not nearly as big or as massive as 

IceCube
• DUNE's focus is on beam neutrino physics, SNB and nucleon 

decay
• DUNE has many unique capabilities and a broad physics 

program
• Let's make it broader!
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Extras
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A Neutrino Scatter in ArgoNeuT
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DUNE Overview
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LArTPC Charge Measurement
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SNB neutrino arrival times

June 16, 2021 Tom Junk | DUNE Detectors 48

40 kton argon, 10 kpc
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Cross Section View of a Single-Phase FD Module
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