Tests of fundamental symmetries with atmospheric neutrinos Tom Stuttard Niels Bohr Institute IceDUNE 2021

CARI§BERG FOUNDATION

VILLUM FONDEN

The fundamental properties of Nature as we know it

- Our current understanding of the Universe (SM + GR) features various symmetries/rules
 - Lorentz invariance
 - CPT symmetry
 - Equivalence principal
- Space-time is boring
 - Smooth and stable
 - Microscopically flat far from massive objects
- Evolution of quantum states is boring
 - Deterministic, reversible and unitary in empty space

Physics at high energy scales

- New high energy theories proposed to solve shortcomings of the SM/GR
 - e.g. quantum gravity (QG)
 - $E \sim 10^{19} \text{ GeV}$, $L \sim 10^{-35} \text{ m}$ (the **Planck scale**)
- SM is then a low energy limit of this new theory

- These effects are suppressed at the "low" energies we observe
- Searching for these effects requires:
 - High energies \rightarrow overcome suppression
 - Precision \rightarrow effects are small
 - Large travel distances \rightarrow accumulation of tiny effects of space-time defects

Atmospheric neutrino oscillations

- Neutrinos act as tiny quantum interferometers
 - Modifications to space-time interferes with superposition producing oscillations
- The high energies/baselines and copious, well understood flux of atmospheric neutrinos is a powerful testing ground for such effects

Lorentz invariance violation

Lorentz invariance violation (LIV)

- Lorentz invariance Experimental results are independent of the orientation and velocity of the laboratory frame
- LIV frequently predicted by high energy/GUT theories, e.g. quantum gravity, string theory, SUSY, ...
 - LIV suppressed at energy scales we can currently access
- Example phenomenology:
 - Energy-dependent speed of light (modified dispersion relation)
 - Preferred direction of space-time

Standard Model Extension (SME)

- Effective field theory extending the SM to include all possible Lorentz invariance violating operators
 - Features both CPT preserving and violating operators

- Many SME tests performed
 - Neutrino oscillations, accelerator, γ -ray, CRs, CMB, precision nuclear/atomic lab tests, ...

Atmospheric neutrino tests

• Atmospheric neutrino flavour transitions modified by a LIV field

Atmospheric neutrino tests

- IceCube atmospheric neutrino LIV tests performed with 2 years of data
 - World's most stringent constraints on higher order SME operators

SuperK <u>results</u> too, and new 8+ year IceCube measurement on the way

Sidereal effects

- LIV may result in preferred direction of Universe
 - Terrestrial physics would then depend on current orientation of Earth w.r.t. this direction
 - Expect sidereal variation in atmospheric neutrino flavour transitions

- Old (2010) IceCube search (PhysRevD.82.112003), not revisited since
- Synergy in testing with spatially separated detectors (e.g. IceCube + DUNE)

CPT violation

CPT violation (CPT-V)

- **CPT symmetry –** *Physics is unchanged under combined C (charge), P (parity) and T (time) transformations*
- CPT proven to hold in a local quantum field theory, if:
 - It is unitary
 - Lorentz invariance holds All potentially violated by quantum gravity → CPT violation?
 - Space-time is flat *Information loss in virtual black holes Fluctuating space-time metric*
- Phenomenology: Differing particle vs antiparticle properties
 - e.g. mass, lifetime, ...

CPT violation in neutrinos

 CPT-V could produce differing neutrino vs antineutrino mixing angles and/or mass splittings
 Example (arXiv:1712.01714)

- Neutrino oscillations sensitive to very small («eV) mass differences
 - \rightarrow excellent CPT-V search channel
- Searches with <u>SuperK</u>, <u>MINOS</u> and <u>global data</u>
 - Sensitivity studies for <u>DUNE</u>, <u>HyperK</u> and <u>ESSnuSB</u>

Atmospheric neutrino CPT-V

- As for other Planck scale physics signals, CPT-V effects potentially suppressed at low energies, motivating:
 - High energy atmospheric neutrino tests (e.g. IceCube)
 - Tests of energy-dependent CPT-V phenomenology

Neither done so far

• UNIVERSITY OF COPENHAGEN

Atmospheric neutrino CPT-V

- As for other Planck scale physics signals, CPT-V effects potentially suppressed at low energies, motivating:
 - High energy atmospheric neutrino tests (e.g. IceCube)
 - Tests of energy-dependent CPT-V phenomenology
- Can in principal statistically separate v_{μ}/\bar{v}_{μ} samples using indirect information
 - Inelasticity
 - Michel electron tagging

IceCube Upgrade!

Neither done so far

Decoherence

Neutrino decoherence

- Neutrino oscillations generally considered to be coherent
 - The wavefunctions of two neutrinos of the same energy travelling the same path evolve identically
- Not true for neutrinos propagating in a stochastic medium
 - Neutrino ensemble becomes increasingly out of phase over distance
 - Neutrino decoherence \rightarrow damping of neutrino oscillations

What stochastic background?

- Quantum gravity → Planck scale space-time fluctuations: **space-time foam**
- Fluctuating space-time curvature → fluctuating travel time/distance between two points: lightcone fluctuations
 - Velocity fluctuations (stochastic LIV) also considered
- Also potential for virtual black hole (VBH) formation
 - QG analogue of vacuum polarisation
 - Space-time permeated with Planck scale black holes
 - Propagating neutrinos undergo stochastic (flavour violating?) interactions with VBH background

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$= -i[H, \rho] - \mathcal{D}[\rho]$$
$$\mathcal{D}[\rho] = \begin{pmatrix} 0 & \Gamma_{21}\rho_{12} & \Gamma_{31}\rho_{13} \\ \Gamma_{21}\rho_{21} & 0 & \Gamma_{32}\rho_{23} \\ \Gamma_{31}\rho_{31} & \Gamma_{32}\rho_{32} & 0 \end{pmatrix}$$

Most studies use a general form for the decoherence operator, characterised by damping parameters, Γ

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$$

$$\mathcal{D}[\rho] = (D_{\mu\nu}\rho^{\nu})b^{\mu} \qquad D = \begin{pmatrix} \beta_{01} & \Gamma_{1} & \beta_{12} & \beta_{13} & \beta_{14} & \beta_{15} & \beta_{16} & \beta_{17} & \beta_{18} \\ \beta_{02} & \beta_{12} & \Gamma_{2} & \beta_{23} & \beta_{24} & \beta_{25} & \beta_{26} & \beta_{27} & \beta_{28} \\ \beta_{03} & \beta_{13} & \beta_{23} & \Gamma_{3} & \beta_{34} & \beta_{35} & \beta_{36} & \beta_{37} & \beta_{38} \\ \beta_{04} & \beta_{14} & \beta_{24} & \beta_{34} & \Gamma_{4} & \beta_{45} & \beta_{46} & \beta_{47} & \beta_{48} \\ \beta_{05} & \beta_{15} & \beta_{25} & \beta_{35} & \beta_{45} & \Gamma_{5} & \beta_{56} & \beta_{57} & \beta_{58} \\ \beta_{06} & \beta_{16} & \beta_{26} & \beta_{36} & \beta_{46} & \beta_{56} & \Gamma_{6} & \beta_{67} & \beta_{68} \\ \beta_{07} & \beta_{17} & \beta_{27} & \beta_{37} & \beta_{47} & \beta_{57} & \beta_{67} & \Gamma_{7} & \beta_{78} \\ \beta_{08} & \beta_{18} & \beta_{28} & \beta_{38} & \beta_{48} & \beta_{58} & \beta_{68} & \beta_{78} & \Gamma_{8} \end{pmatrix}$$

 $\left(\Gamma_{0} \quad \beta_{01} \quad \beta_{02} \quad \beta_{03} \quad \beta_{04} \quad \beta_{05} \quad \beta_{06} \quad \beta_{07} \quad \beta_{08} \right)$

- Neutrino decoherence generally treated as **open quantum system**
 - Neutrino and environment considered as single quantum system
- State evolution using **Lindblad master equation**:

$$\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$$

• Energy-dependence typically added "by hand":

$$\Gamma(E) = \Gamma(E_0) \left(\frac{E}{E_0}\right)^n \quad \text{or} \quad \Gamma(E) = \zeta_{\text{Planck}} \frac{E^n}{M_{\text{Planck}}^{n-1}}$$
w.r.t. arbitrary E (usually 1 GeV)

w.r.t. Planck scale "Natural" expectation: $\zeta \sim O(1)$

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Example scenario 1: Flavour violating v-VBH interactions Energy-independent

Signal across all E (IceCube + DUNE synergy)

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Example scenario 1: Flavour violating v-VBH interactions Energy-independent

Standard oscillations for Earth crossing neutrinos weakened

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

• Signal is damping of neutrino flavour transitions \rightarrow increases with baseline

Sensitivity to "natural" Planck scale effects for E^{≤3}-dependence!

Other scenarios

- Rich decoherence phenomenology depending on underlying microphysics
 - Final flavour, large baseline limit, atmospheric vs solar frequency relative damping, unitarity and energy- and distance-dependence depend on operator/scenario tested

Status of atmospheric neutrino searches

- Searches performed with both <u>SuperK</u> and <u>IceCube</u>
 - Most sensitive using 1 yr IceCube + 3 yr DeepCore public datasets
 - Coloma, Lopez-Pavon, Martinez-Soler, Nunokawa

- 8+ yr IceCube collaboration searches underway
 - Testing both specific models and general operators

Wrapping up

Why not astrophysical neutrinos?

- The extremely high energies and baselines of the diffuse astrophysical neutrino flux is also a great testing ground for new physics
- However, poorly understood flux, incoherent nature of sources and low statistics make atmospheric neutrinos preferable in many cases

Other related topics

- Equivalence principal violation
 - Inertial mass ≠ gravitational mass
- Extra dimensions
 - RH neutrinos access in compactified dimensions
- Proton decay
 - Baryon number violation
- Quantum mechanical tests
 - Leggett-Garg Inequality, ...

Summary

- Many fundamental properties of SM and GR potentially violated in high energy theories such as quantum gravity
 - Suppression at low energies
- Potentially produce sub-dominant modifications to neutrino oscillations
- The high energy, large baseline, high statistics oscillation measurements enabled by atmospheric neutrinos are ideally suited to these searches
 - Some of the strongest tests of Planck scale physics
- Underdeveloped field \rightarrow plenty of scope for new measurements
- Broad signal energy range \rightarrow DUNE+IceCube synergy

$$\delta L(E,L) = \delta L_{\text{Planck}} \left(\frac{L}{L_{\text{Planck}}}\right)^m \left(\frac{E}{M_{\text{Planck}}}\right)^n$$

$$\mathcal{D}[\rho] = \frac{2m(\delta L_0)^2 L^{2m-1}}{L_0^{2m}} \left(\frac{E}{E_0}\right)^{2n} \begin{pmatrix} 0 & \frac{\rho_{21}}{(\eta\lambda_{21})^2} & \frac{\rho_{31}}{(\eta\lambda_{31})^2} \\ \frac{\rho_{21}}{(\eta\lambda_{21})^2} & 0 & \frac{\rho_{32}}{(\eta\lambda_{32})^2} \\ \frac{\rho_{31}}{(\eta\lambda_{31})^2} & \frac{\rho_{32}}{(\eta\lambda_{32})^2} & 0 \end{pmatrix}$$