Atmospheric Neutrinos

50 GeV to 100 TeV

Outline

- Phenomenology of atmospheric neutrinos
 - Solutions of cascade equation
 - Relation to muons
 - Importance of kaons
 - Angular distributions
 - Energy dependence
 - Primary spectrum
 - Hadronic models, scaling violation
- Muon charge ratio
 - Implications for neutrino/anti-neutrino ratio
 - Separate v_{μ} and v_{μ} fluxes
- Summary
 - Uncertainties

Cascade equation

Matrix Cascade Equation (MCEq)* starts with a nucleon of energy E_0 and integrates in steps of dX for each θ with a matrix of 65 particle types and 8 energy bins per decade. *https://github.com/afedynitch/MCEq

IceDUNE, 16/06/2021

Analytic Approximations (AA)

For a power law primary spectrum + scaling of production σ , solutions for low and high energy have the forms:

$$\frac{\mathrm{d}N_{\ell}}{\mathrm{d}E_{\ell}} = \int_{0}^{X_{0}/\cos\theta} P_{M\ell}(E_{\ell}, X) \,\mathrm{d}X \bigg|_{E_{\ell} \ll \epsilon_{M}} \to \frac{N_{0}(E_{\ell})}{1 - Z_{NN}} A_{M\ell}$$
$$\frac{\mathrm{d}N_{\ell}}{\mathrm{d}E_{\ell}} = \int_{0}^{X_{0}/\cos\theta} P_{M\ell}(E_{\ell}, X) \,\mathrm{d}X \bigg|_{E_{\ell} \gg \epsilon_{M}} \to \frac{N_{0}(E_{\ell})}{1 - Z_{NN}} \left(\frac{\epsilon_{M}}{\cos\theta E_{\ell}}\right) \frac{A_{M\ell}}{B_{M\ell}}$$

Combine low and high-energy forms in the approximation

$$\frac{\mathrm{d}N_{\ell}}{\mathrm{d}E_{\ell}} = \frac{N_0(E_{\ell})}{1 - Z_{NN}} \left\{ \frac{A_{\pi\ell}}{1 + B_{\pi\ell}\cos\theta E_{\ell}/\epsilon_{\pi}} + \frac{A_{K\ell}}{1 + B_{K\ell}\cos\theta E_{\ell}/\epsilon_{K}} \right\}$$
$$A_{M\ell} = R_{M\ell}Z_{NM}Z_{M\ell}(\gamma) \qquad B_{M\ell} = \frac{Z_{M\ell}(\gamma)}{Z_{M\ell}(\gamma+1)} \frac{\Lambda_M - \Lambda_N}{\Lambda_M \ln(\Lambda_M/\Lambda_N)}$$

IceDUNE, 16/06/2021

Compare methods

TG, D. Soldin, A. Crossman, A. Fedynitch ICRC 2019, arXiv:1910.08676

IceDUNE, 16/06/2021

Two body decays of π^{\pm} & K^{\pm}

For a power-law primary spectrum of nucleons with integral spectral index $~\gamma\approx 1.7$

$$Z_{\pi\mu} = \frac{(1 - r_{\pi}^{\gamma + 2})}{(\gamma + 2)(1 - r_{\pi})} \text{ and } Z_{\pi\nu_{\mu}} = \frac{(1 - r_{\pi})^{\gamma + 2}}{(\gamma + 2)(1 - r_{\pi})}$$
$$r_{\pi} = \frac{m_{\mu}^{2}}{m_{\pi}^{2}} \approx 0.573 \qquad r_{K} = \frac{m_{\mu}^{2}}{m_{K}^{2}} \approx 0.046$$

$$Z_{\pi\nu_{\mu}} << Z_{K\nu_{\mu}}$$

Critical energies and Z-factors

$$\epsilon_{M} = \frac{RT(X)}{M_{\text{mol}}g} \frac{Mc^{2}}{c\tau_{M}} \qquad \text{For T = 220° K} \quad \begin{cases} \epsilon_{\pi} = 115 \text{ GeV} \\ \epsilon_{K^{\pm}} = 857 \text{ GeV} \\ \epsilon_{D^{\pm}} \approx 3.7 \times 10^{7} \text{ GeV} \end{cases}$$

$$Z_{NM}(E) = \int_{E}^{\infty} \frac{N_{0}(E')}{N_{0}(E)} \frac{\sigma(E')}{\sigma(E)} \frac{\mathrm{d}n_{NM}(E', E)}{\mathrm{d}E} \mathrm{d}E' \to \int_{0}^{1} x^{\gamma} \frac{\mathrm{d}n_{NM}(x)}{\mathrm{d}x} \mathrm{d}x$$

$$\uparrow$$
Energy-dependent Z-factors

Gondolo, Ingelman, Thunman, Astropart. Phys. 5 (1996) 309

Scaling

How the v_{μ} spectrum steepens $\frac{\mathrm{d}N_{\ell}}{\mathrm{d}E_{\ell}} = \frac{N_0(E_{\ell})}{1 - Z_{NN}} \left\{ \frac{A_{\pi\ell}}{1 + B_{\pi\ell}\cos\theta E_{\ell}/\epsilon_{\pi}} + \frac{A_{K\ell}}{1 + B_{K\ell}\cos\theta E_{\ell}/\epsilon_{K}} \right\}$

- Steepening first for π^{\pm} component
 - Later for kaon component ($\epsilon_{\pi} \, << \epsilon_{K}$)
- Steepening first for near vertical
 - Later for more horizontal ($1/cos\theta$)
- π to v_{μ} suppressed
 - Muon carries most of energy in $\pi \rightarrow \mu + \nu_{\mu}$
- Kaon channel dominates for $E(v_{\mu}) > 100 \text{ GeV}$

Evolution of angular distribution $\nu_{\mu} + \bar{\nu}_{\mu}$

 \sim sec(θ), but kaon still isotropic

Pion, kaon fractions vs. E for $v_{\mu} \& \mu$

Summary of μ^+/μ^- measurements

Figure from OPERA, N. Agafonova et al., Eur. Phys. J C74 (2014) 2933

Muon charge ratio

Pions only (Frazer et al., PR D 5 (1972) 1653

$$egin{aligned} & \mu^+ \ \mu^- pprox rac{1+eta\delta_0lpha_\pi}{1-eta\delta_0lpha_\pi} = rac{f_{\pi^+}}{1-f_{\pi^+}}\,, \ & eta = rac{1-Z_{pp}-Z_{pn}}{1-Z_{pp}+Z_{pn}} pprox 0.909; \ & lpha_\pi = rac{Z_{p\pi^+}-Z_{p\pi^-}}{Z_{p\pi^+}+Z_{p\pi^-}} pprox 0.165 \end{aligned}$$

Include K $\rightarrow \mu + \nu_{\mu}$ TG Astropart. Phys. 35(2012) 801 $\frac{\mu^{+}}{\mu^{-}} = \left[\frac{f_{\pi^{+}}}{1 + B_{\pi\mu}} \frac{f_{\pi^{+}}}{\cos(\theta)E_{\mu}/\epsilon_{\pi}} + \frac{\frac{1}{2}(1 + \alpha_{K}\beta\delta_{0})A_{K\mu}/A_{\pi\mu}}{1 + B_{K\mu}^{+}\cos(\theta)E_{\mu}/\epsilon_{K}} \right]$ $\times \left[\frac{(1 - f_{\pi^{+}})}{1 + B_{\pi\mu}\cos(\theta)E_{\mu}/\epsilon_{\pi}} + \frac{(Z_{NK^{-}}/Z_{NK})A_{K\mu}/A_{\pi\mu}}{1 + B_{K\mu}\cos(\theta)E_{\mu}/\epsilon_{K}} \right]^{-}$

$$lpha_{K}=rac{Z_{pK^{+}}-Z_{pK^{-}}}{Z_{pK^{+}}+Z_{pK^{-}}}$$

Rise in muon charge ratio reflects higher asymmetry in the charged kaon channel, which becomes more important when $E_{\mu} > \epsilon_{\kappa} \approx 850 \text{ GeV}.$ The key parameter is $\alpha_{\kappa} > \alpha_{\pi}$ due to associated production: $p \rightarrow \Lambda K^+$

Muon neutrino/anti-neutrino ratio predicted in 6 hadronic interaction models

From Fedynitch et al., PRD 100 103018 (2019)

Muon neutrino/anti-neutrino ratio predicted in 6 hadronic interaction models

IceCube sterile neutrino analysis

FIG. 1. Muon-antineutrino oscillogram. Atmospheric $\bar{\nu}_{\mu}$ disappearance probability vs true energy and cosine zenith at the globally preferred sterile neutrino hypothesis of Ref. [11] $[\Delta m_{41}^2 = 1.3 \text{ eV}^2, \sin^2(2\theta_{24}) = 0.07, \sin^2(2\theta_{34}) = 0.0]$. Effects include a matter-enhanced resonance at TeV energies, neutrino absorption at high energy and small zenith, and vacuumlike oscillation at low energies. The matter-enhanced resonance appears only in the antineutrino flux for the case of small angles and $\Delta m_{41}^2 > 0$. Vertical white lines indicate transitions between inner to outer core $[\cos(\theta_{\nu}^{\text{true}}) = -0.98]$ and outer core to mantle $[\cos(\theta_{z}^{\text{true}}) = -0.83]$.

PRL 125, 141801 (2020)

Matter-enhanced resonance for near vertically upward anti- v_{μ}

IceDUNE, 16/06/2021

Separate $v_{\mu} \& \overline{v}_{\mu}$ fluxes

Uncertainties in conventional v fluxes:

TG: 1605.03073

IceDUNE, 16/06/2021

Backup on primary spectrum and composition

AMS02, PRL 119 (2017) 251101

Tom Gaisser

Features in all-particle spectrum

All-particle spectrum to nucleon spectrum

 $\phi_i(E) \equiv E \frac{\mathrm{d}N_i}{\mathrm{d}E} = \Sigma_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$

All-particle spectrum

Spectrum of nucleons

Three-population models

			р	He	CNO	Mg-Si	Fe
	Galactic A	Pop. 1:	7860	3550	2200	1430	2120
		$R_c = 4 \text{ PV}$	$1.66\ 1$	1.58	1.63	1.67	1.63
	Galactic B	Pop. 2:	20	20	13.4	13.4	13.4
Extragalactic -		$R_c = 30 \text{ PV}$	1.4	1.4	1.4	1.4	1.4
	H3a →	Pop. 3:	1.7	1.7	1.14	1.14	1.14
		$R_c = 2 \text{ EV}$	1.4	1.4	1.4	1.4	1.4
	H4a →	Pop. $3(*)$:	200	0.0	0.0	0.0	0.0
		$R_c = 60 \text{ EV}$	1.6				

TG Astropart. Phys. 35 (2012) 801

C	C.	т
U	S	L

	р	He	С	Ο	Fe	50 < Z < 56	78 < Z < 82
Pop. 1:	7000	3200	100	130	60		
$R_c = 120 \text{ TV}$	$1.66\ 1$	1.58	1.4	1.4	1.3		
Pop. 2:	150	65	6	7	2.3	0.1	0.4
$R_c = 4 \text{ PV}$	1.4	1.3	1.3	1.3	1.2	1.2	1.2
Pop. 3:	14				0.025		
$R_c = 1.3 \text{ EV}$	1.4				1.2		

TG, Stanev, Tilav, Front. Phys. (Beijing) 8 (2013) 748 (arXiv:1303.3565

GST 3 population model

GSF (Global Spline Fit)

"Data-driven", no input model (H. Dembinski et al., 1711.11432)

