

IceDUNE: oscillations and friends!

Pedro A. N. Machado

June 16th, 2021

Fermilab U.S. DEPARTMENT OF Office of Science

Imagine what can happen if they partner up...

Some thoughts on what else could be done with it

Redundancy = robustness

How to be redundant in the the neutrino sector?

Pedro A. N. Machado, pmachado@fnal.gov

Leading measurements of CP violation will be done with accelerator neutrinos

Sub-GeV atmospheric neutrinos are one of the richest neutrino samples we have access to.

Sub-GeV atmospheric neutrinos are one of the richest neutrino samples we have access to.

Sub-GeV atmospheric neutrinos are one of the richest neutrino samples we have access to.

But sub-GeV atmospherics are very difficult...

Needs to know neutrino direction

Low E protons are invisible

② Cherenkov detectors

Liquid Argon TPCs can do it!

ArgoNeuT demonstrated the LAr capability to detect 21 MeV recoil protons. AraoNeuT 1810.06502

LArIAT 1911.10379

Muons:

$$\mu^+ \rightarrow e^+ \overline{v}_{\mu} v_e$$

 $\mu^- p^+ \rightarrow v_{\mu} + n$

Pions:

 $\pi^+ n \rightarrow \pi^0 p^+$ $\pi^- p^+ \rightarrow \pi^0 n$

Topology depends on particle and its charge

Simulate neutrino-argon interactions with event generators

Use realistic atmospheric fluxes (Honda et al 1502.03916)

Account for uncertainties of atmospheric neutrino fluxes 40% normalization, 5% e/ μ ratio, 2% nu/nubar ratio, ± 0.2 spectral distortion coefficient

Realistic LArTPC capabilities $\Delta p = 5\%$, 5%, 10%, $\Delta \theta = 5^{\circ}$, 5°, 10°, for e, µ, p, K_p = 30 MeV

Classify events by final state topology (number of protons)

 $\Phi_{\alpha}(E) = \Phi_{\alpha,0} f_{\alpha}(E) \left(\frac{E}{E_0}\right)'$

1.									1	1
	-10.63	10.46	10.41	10.53	11.91	11.75	10.20	9.30	8.66	5.94 -
).8	- -23.04 	22.69	22.31	22.44	25.16	24.81	21.63	19.84	18.62	- 12.52-
	-31.69	31.59	30.45	30.33	33.60	33.07	29.00	26.82	25.54	16.46-
n e	-41.31	41.84	39.49	39.00	42.43	41.77	36.90	34.34	33.23	20.66-
5.0	-52.43	54.38	50.42	49.60	52.97	52.07	46.32	43.20	42.54	26.00-
ר ר	-64.67	68.96	63.06	61.65	64.31	63.25	56.80	53.05	53.14	31.83-
J.4	-73.42	80.14	72.59	70.60	71.94	70.66	64.06	60.11	60.78	35.21-
חח	-60.29	72.12	65.94	63.72	63.50	62.15	56.65	53.34	53.75	30.03-
J.Z	-26.49	33.30	30.80	30.21	29.71	28.85	26.09	24.24	23.90	13.09-
_	1().8-().6-().4-0	0.2 0). 0.	2 0.	4 0.	6 0.	8 1
					\cos	$ heta_{ s^{ ext{dep}}}^{ ext{dep}}$				

 N_e – CC–1p0 $\pi,\,\delta_{\rm CP}$ = $3\pi/2$

 $\Delta N_e - CC - 1p0\pi$, $\delta_{CP} = 3\pi/4$

										-
	1.	0.65	-0.48	-0.21	-0.90	-0.58	-0.08	0.00	0.00	
Ear [GeV]	0.8	1.45	-1.07	-0.55	-1.89	-1.26	-0.22	-0.02	0.00	
		2.31	-1.54	-0.90	-2.67	-1.75	-0.40	-0.05	-0.01	
	0.6		-2.26	-1.46	-3.58	-2.55	-0.72	-0.13	-0.03	
	0.0	4.74	-3.45	-2.31	-4.66	-3.39	-1.16	-0.28	-0.08	
	0.4	-6.28	-4.89	-3.39	-6.01	-4.86	-2.10	-0.67	-0.21	
	0.4		-7.19	-4.69	-6.84	-6.09	-3.25	-1.39	-0.54	
	0.2	-6.14	-8.55	-4.71	-5.54	-5.33	-3.44	-1.88	-0.92	
	0.2	1.08	-2.93	-2.46	-2.54	-2.53	-1.88	-1.16	-0.66	
	_	1().8-0).6-().4-(0.2 0). 0.	2 0.	.4 0.	•
							odon			

 $\cos \theta_z^{\text{dep}}$

Pedro A. N. Machado, pmachado@fnal.gov

Fermilab

Pedro A. N. Machado, pmachado@fnal.gov

Fermilab

DUNE has a unique opportunity to study sub-GeV neutrinos

This opens up the possibility of measuring CP violation independently of the beam

Some thoughts on what else could be done with it

DUNE: MSW resonance at the solar splitting

What do we learn when we combine both?

IceCube: MSW resonance at the atmospheric splitting

NSIs are relevant for high energy, but also low energy due to solar Δm^2 driven oscillations

Sterile neutrinos

Idea: Nunokawa, Peres, Zukanovich-Funchal hep-ph/0302039

Fermilab Pedro A. N. Machado, <u>pmachado@fnal.gov</u>

Sterile neutrinos

Sterile Oscillations at High and Low Energies

Pedro A. N. Machado, <u>pmachado@fnal.gov</u>

LV	'nT	2021

Conclusions

- Atmospheric neutrinos still have lots of potential
 - Low energy, high energy
 - CP violation, steriles, NSIs, novel particles, ...
 - We need to get to work.

Backup

Pedro A. N. Machado, pmachado@fnal.gov

