

A Theory Perspective on Axions

Matt Reece

Harvard University

at the BREAD Collaboration Meeting, Jan. 14, 2026

Outline

Key things to know about axions and Strong CP

- Demystifying theta terms
- Strong CP problem and axion solutions
- What is the right experimental target?

Axion theory at Harvard

- Brief summary: what my students and I are up to

The θ Parameter in $SU(n)$ Gauge Theory

Gauge theories have a **θ parameter**. There are formulas for it:

Lagrangian viewpoint:

$$S_\theta = S_0 + \frac{\theta}{8\pi^2} \int \text{tr}(F \wedge F) = S_0 + \frac{\theta}{64\pi^2} \int d^4x \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}^a F_{\rho\sigma}^a.$$

Hamiltonian viewpoint, Weyl gauge ($A_0 = 0$):

$$H_\theta = g^2 \left(i \frac{\delta}{\delta A_i^a} - \frac{\theta}{4\pi^2} B_i^a \right)^2 + \frac{1}{g^2} (B_i^a)^2 \quad \text{where} \quad B_i^a = (\nabla \times A^a)_i - \frac{1}{2} f^{abc} (A^b \times A^c)_i$$

Facts About the θ Parameter

Physical quantities depend on the value of θ .

All physics is 2π periodic in the value of θ . More precisely,

$$H_{\theta+2\pi} = U H_\theta U^\dagger$$

where U is a unitary operator (the “Chern-Simons operator”).

If θ is *not* an integer multiple of π , then **CP (equivalently, **T**) symmetry is explicitly violated.**

The θ term is “topological”: $\frac{1}{8\pi^2} \int \text{tr}(F \wedge F) \in \mathbb{Z}$ when integrating over a closed spacetime. (Mathematically, related to the 2π -periodicity.)

Facts About the θ Parameter

Physical quantities depend on the value of θ .

Theorists like to emphasize this bit about the topological nature of the term, but people often get confused about it.

In particular, the other facts that I told you are **all true even if you study QFT in topologically trivial spacetime (like Minkowski spacetime)**.

The θ term is “topological”: $\frac{1}{8\pi^2} \int \text{tr}(F \wedge F) \in \mathbb{Z}$ when integrating over a closed spacetime. (Mathematically, related to the 2π -periodicity.)

Aside: Advice About the θ Parameter

If you ever get confused about the θ parameter (many of us do, sometimes), there is a simple system with all the key properties.

This is a *free* quantum particle on a ring (or circle), with coordinate $\varphi \cong \varphi + 2\pi$, and action

$$S = \int dt \left(\frac{I}{2} \dot{\varphi}^2 + \frac{\theta}{2\pi} \dot{\varphi} \right)$$

It has Hamiltonian

$$H = \frac{1}{2I} \left(\frac{d}{d\varphi} - \frac{\theta}{2\pi} \right)^2$$

and θ -dependent energy eigenvalues $E_n = \frac{1}{2I} \left(n - \frac{\theta}{2\pi} \right)^2$, $n \in \mathbb{Z}$.

Any surprising claim about θ terms can be evaluated in this context.

The Wrong Way to Approach the θ Parameter

It is always dangerous to tell someone how *not* to think about something, but since someone always asks:

You may have heard about “ θ vacua.”

The Wrong Way to Approach the θ Parameter

It is always dangerous to tell someone how *not* to think about something, but since someone always asks:

You may have heard about “ θ vacua.”

For any QFT with any parameter y , you can make up a kind of “super-QFT”* with states $|\psi, y\rangle$ and matrix elements

$$\langle \psi', y' | O | \psi, y \rangle = \delta_{yy'} \left(\langle \psi' | O | \psi \rangle \right)_{\text{QFT with param } y}$$

* The correct technical term is “direct sum of QFTs.”

The Wrong Way to Approach the θ Parameter

It is always dangerous to tell someone how *not* to think about something, but since someone always asks:

You may have heard about “ θ vacua.”

For any QFT with any parameter y , you can make up a kind of “super-QFT” with states $|\psi, y\rangle$ and matrix elements

$$\langle \psi', y' | O | \psi, y \rangle = \delta_{yy'} \left(\langle \psi' | O | \psi \rangle \right)_{\text{QFT with param } y}$$

You *can* do this, but it’s usually a silly thing to do.

The Wrong Way to Approach the θ Parameter

When people talk about “ θ vacua,” they are making up such a “super-QFT.”

Oddly, people only do this for θ ; you never hear about, say, “electron Yukawa vacua,” but the super-QFT works there too.

People often say we do this because the “ θ vacua” are linear combinations of something else called “ n vacua,” but those make *less* sense.

What happened here is that a few very smart and influential people were confused in 1976, and other people have been repeating their confusion ever since.

The Wrong Way to Approach the θ Parameter

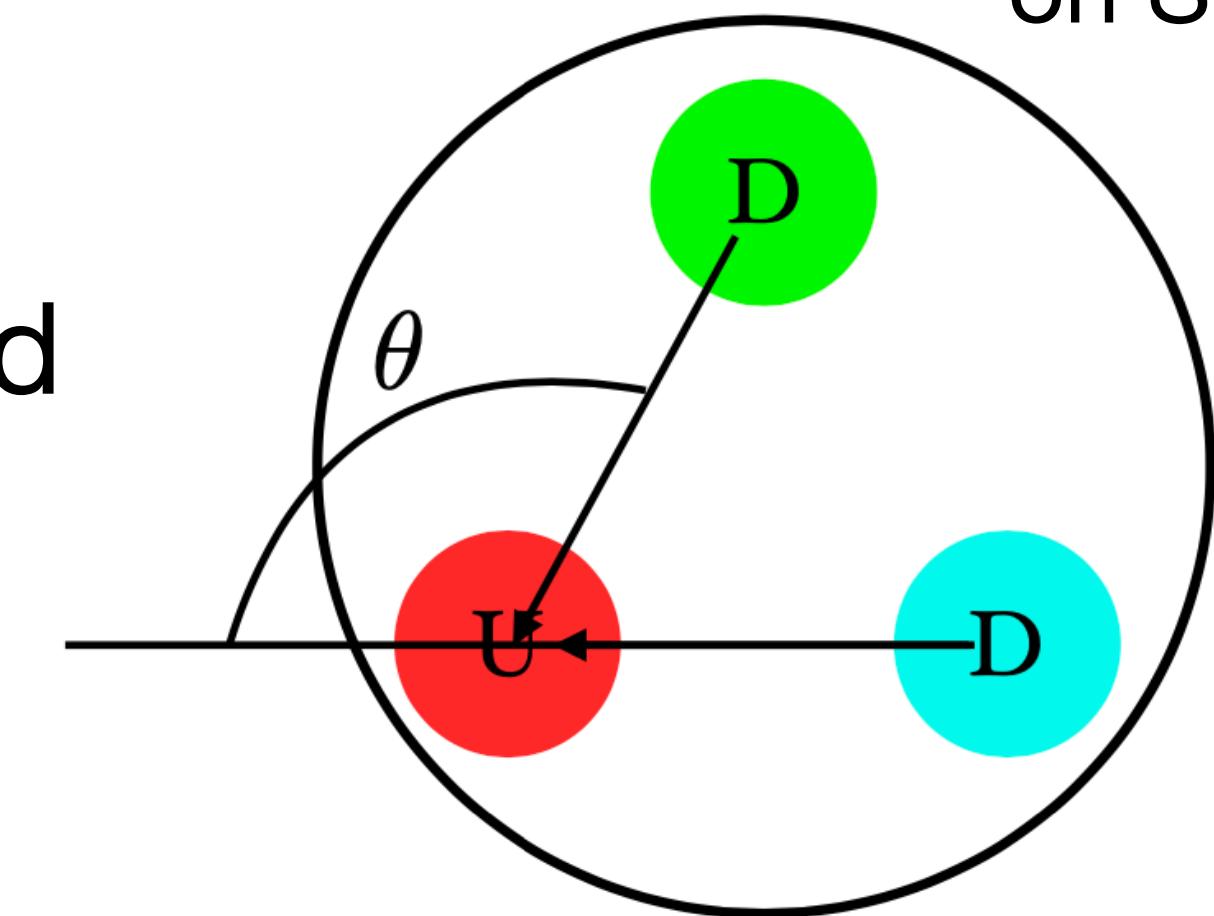
When people talk about “ θ vacua,” they are making up such a “super-QFT.”

Oddly, people only do this for θ ; you never hear about, say, “electron Yukawa vacua,” but the super-QFT works there too.

People often say we do this because the “ θ vacua” are linear combinations of something else called “ n vacua,” but those make *less* sense.

What happened here is that a few very smart and influential people were confused in 1976, and other people have been repeating their confusion ever since.

Fifty years have passed. We should stop repeating them.
 θ is *just* a parameter in the Lagrangian (or Hamiltonian).
Don't mystify it.


Neutron EDM and Strong CP Puzzle

Smaller than geometric cartoon expectation by factor $m_u/\Lambda_{\text{QCD}} \sim 10^{-3}$. **(Chiral anomaly)**

The Strong CP phase $\bar{\theta}$ gives rise directly to a CP-odd pion-proton-neutron interaction.

This in turn feeds into the neutron EDM at one loop:

$$d_n \approx \frac{e\bar{\theta}g_A c_+ m_u m_d}{8\pi^2(m_u + m_d)f_\pi} \log \frac{m_\rho^2}{m_\pi^2} \sim 3 \times 10^{-16} \bar{\theta} e \text{ cm} \Rightarrow |\bar{\theta}| \lesssim 10^{-10} (!)$$

Crewther, di Vecchia, Veneziano, Witten 1979

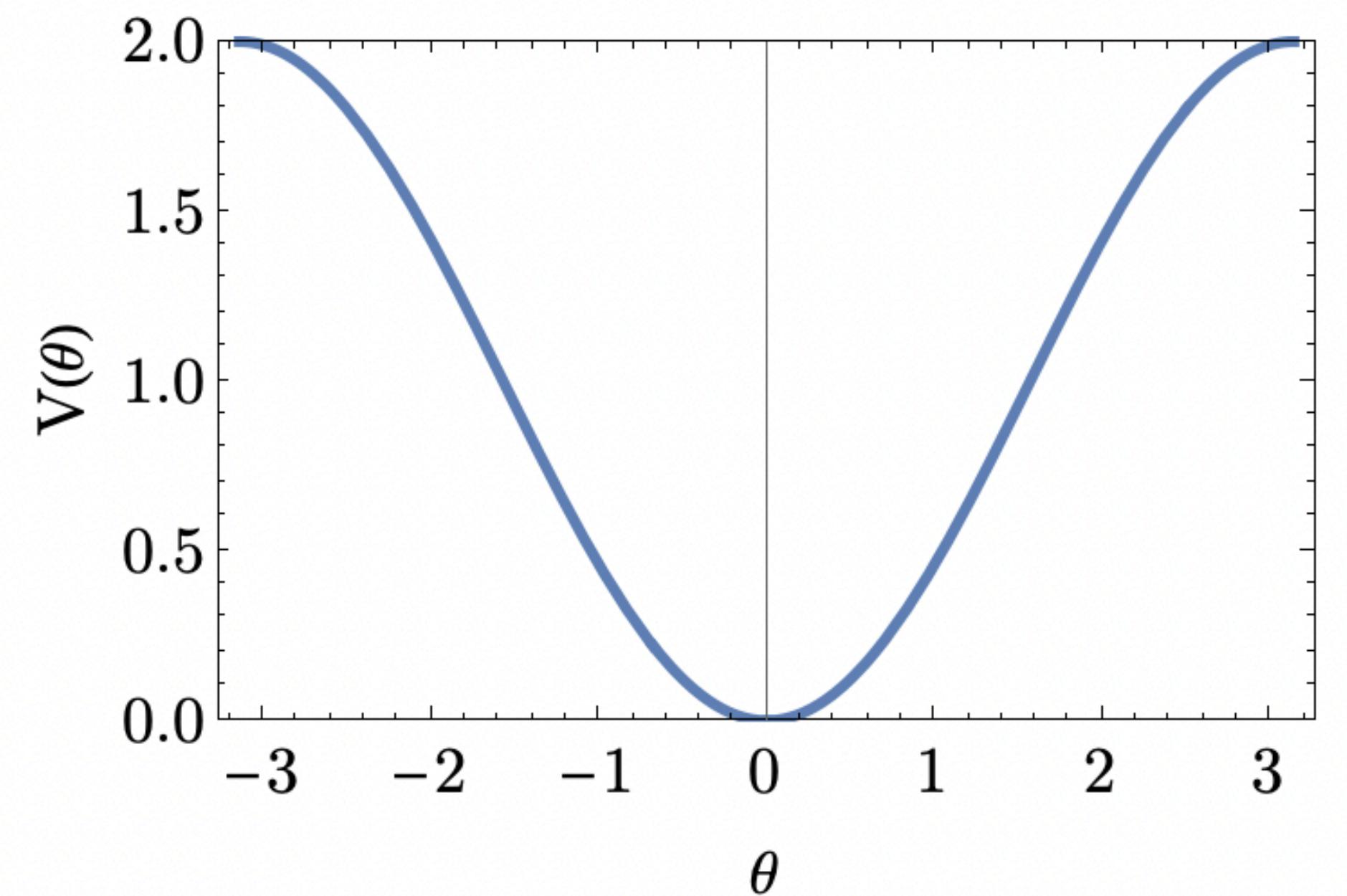

But: CP is not a symmetry of nature! Why so small?

Fig. from
Anson Hook,
TASI Lectures
on Strong CP

Axions

Promote θ to a **dynamical field**, $\theta(x)$, interacting with gluons.

$$\mathcal{L} = \frac{1}{2}f^2(\partial\theta)^2 + \frac{1}{64\pi^2}\theta(x)G_{\mu\nu}^a\tilde{G}^{a\mu\nu}(x)$$

Strong dynamics \Rightarrow
**Axion relaxes to
CP-conserving value.**

$$m_a \sim \frac{m_\pi f_\pi}{f} \sim \frac{10^{-5} \text{ eV}}{f/(10^{12} \text{ GeV})}$$

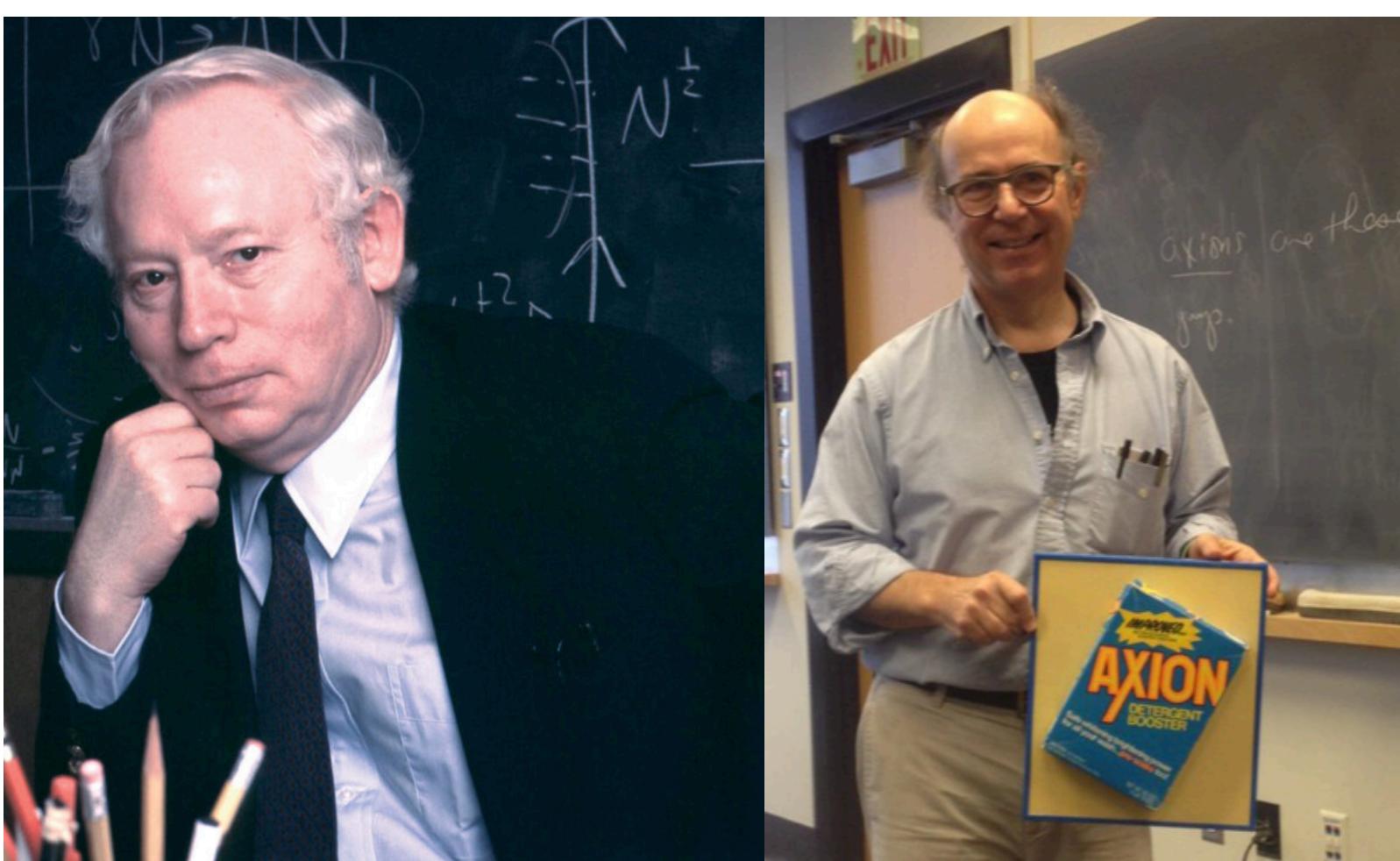
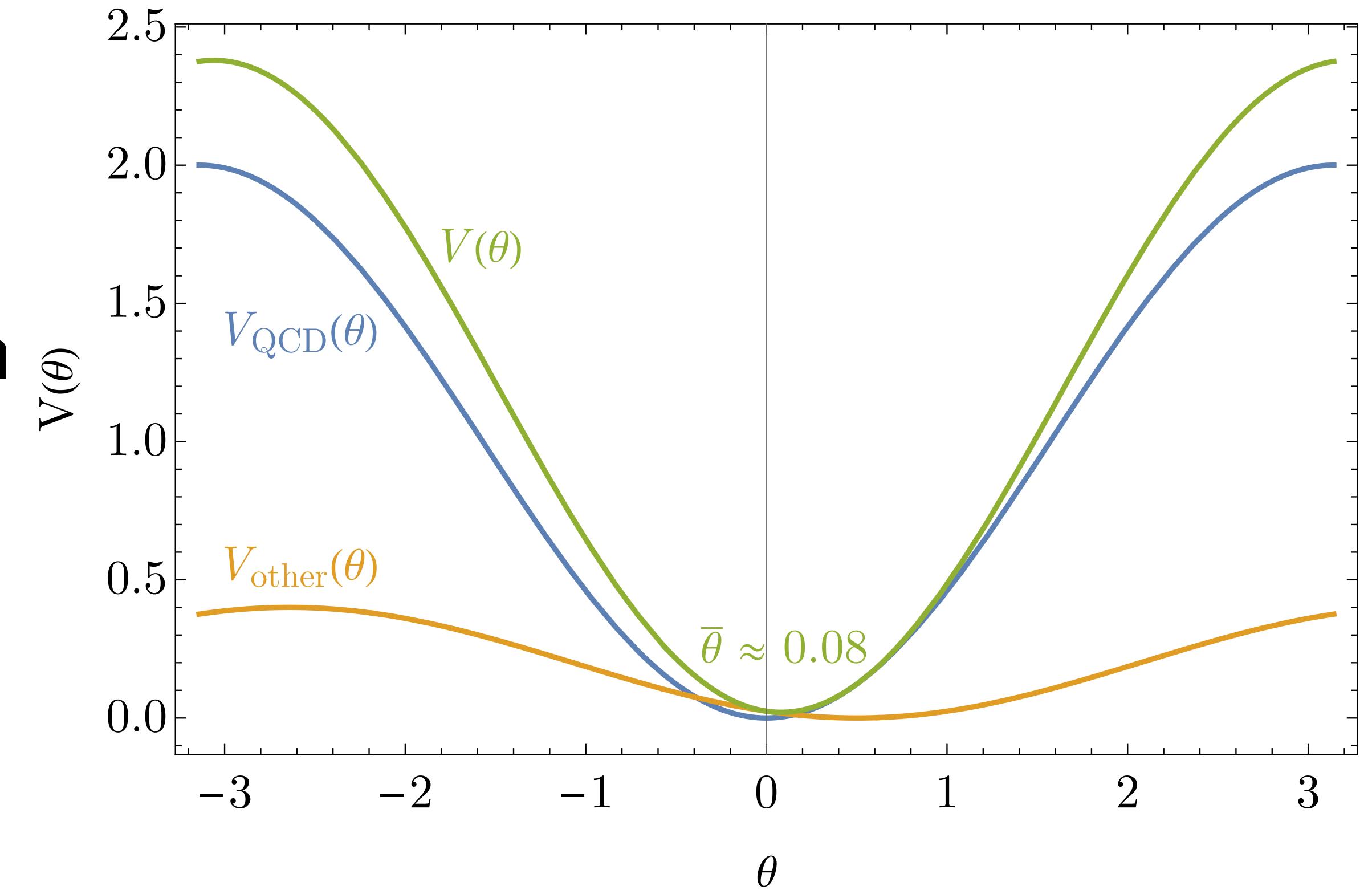



Fig. from Anson Hook, TASI
Lectures on Strong CP

Roberto Peccei, Helen Quinn
(photo: Ryan Schude, Quanta Magazine)



Steven Weinberg, Frank Wilczek

The Axion “Quality Problem”

The Peccei/Quinn (and KSVZ, DFSZ) “solution” wasn’t really. $V_{\text{QCD}}(\theta)$ is minimized at $\theta = 0$, but we could add all kinds of other terms that have a minimum elsewhere.

To explain $|\bar{\theta}| < 10^{-10}$ we need to assume $V_{\text{other}}(\theta)$ to be tiny – but then why not just assume small $\bar{\theta}$ to start?

(Georgi, Hall, Wise '81; Lazarides, Panagiotakopoulos, Shafi '86; Casas, Ross '87; Kamionkowski, March-Russell '92; Holman, Hsu, Kephart, Kolb, Watkins, Widrow '92; Barr, Seckel '92; Ghigna, Lusignoli, Roncadelli '92; ...)

Axion Theories: 4d (“Peccei-Quinn”) vs. Extra-Dimensional

Familiar 4d axion theories (e.g., KSVZ-like, DFSZ-like): the axion is a **pseudo-Nambu-Goldstone boson**, the phase of a complex field Φ . Quality

problem from terms like $\frac{\lambda}{M_{\text{Pl}}^{n-4}}\Phi^n + \text{c.c.}$ in the Lagrangian, which must be suppressed all the way up to $n \sim 14$. **New gauge symmetries** can do that.

Extra-dimensional axion theories: the axion is **not** a Goldstone boson.

Arises as gauge field **integrated over extra dimension(s):** $\theta = \int A$. Gauge invariance forbids terms like A^n , allows terms involving $F = dA$ hence $d\theta$.

Experimentally: hard to tell the difference. (Maybe best hope is cosmology.)

Some Good News

For **extra-dimensional axions**, the quality problem is mild. Every dangerous term $V_{\text{other}}(\theta)$ is proportional to an exponential like $\exp(-M^d L^d)$ where M is a fundamental mass scale and L a length scale of extra dimensions.

Axion-gluon coupling from a “Chern-Simons” coupling $\frac{1}{8\pi^2} \int A \wedge \text{tr}(G \wedge G)$.

Not guaranteed to solve the Strong CP problem, but often will.

Furthermore, **extra-dimensional axions** are a **prediction** of string theory. They are probably the single most promising way we might connect quantum gravity with realistic experiments in the foreseeable future.

(This all goes back to a 1984 paper of Edward Witten; see also 2006 work of Joe Conlon and of Peter Svrcek & Edward Witten.)

Axion Models at a Glance

“Pre-inflation” scenario

Post-inflation PQ transition

Pseudo-Nambu-Goldstone for 4d $U(1)_{\text{PQ}}$

Quality problem

Isocurvature problem

Quality problem

Domain wall problem

Stable relic problem

Zero mode of gauge field in higher dimensions

(Quality problem)

Isocurvature problem

UV insights

Not possible
(no linearly realized PQ symmetry to break)

(maybe similar late-time physics from other initial conditions?)

Axion interactions with gluons & photons

Fundamental axion interactions:

The interactions are quantized. If no fractionally charged particles:

$$k_G \in \mathbb{Z}, \quad \frac{2}{3}k_G + k_F \in \mathbb{Z}$$

(MR '23; Choi, Forslund, Lam, Shao '23; Córdova, Hong, Wang '23)

Low-energy axion-photon coupling: $g_{a\gamma\gamma} = \frac{\alpha}{2\pi f/k_G} \left(\frac{2k_F}{k_G} - 1.92(4) \right)$

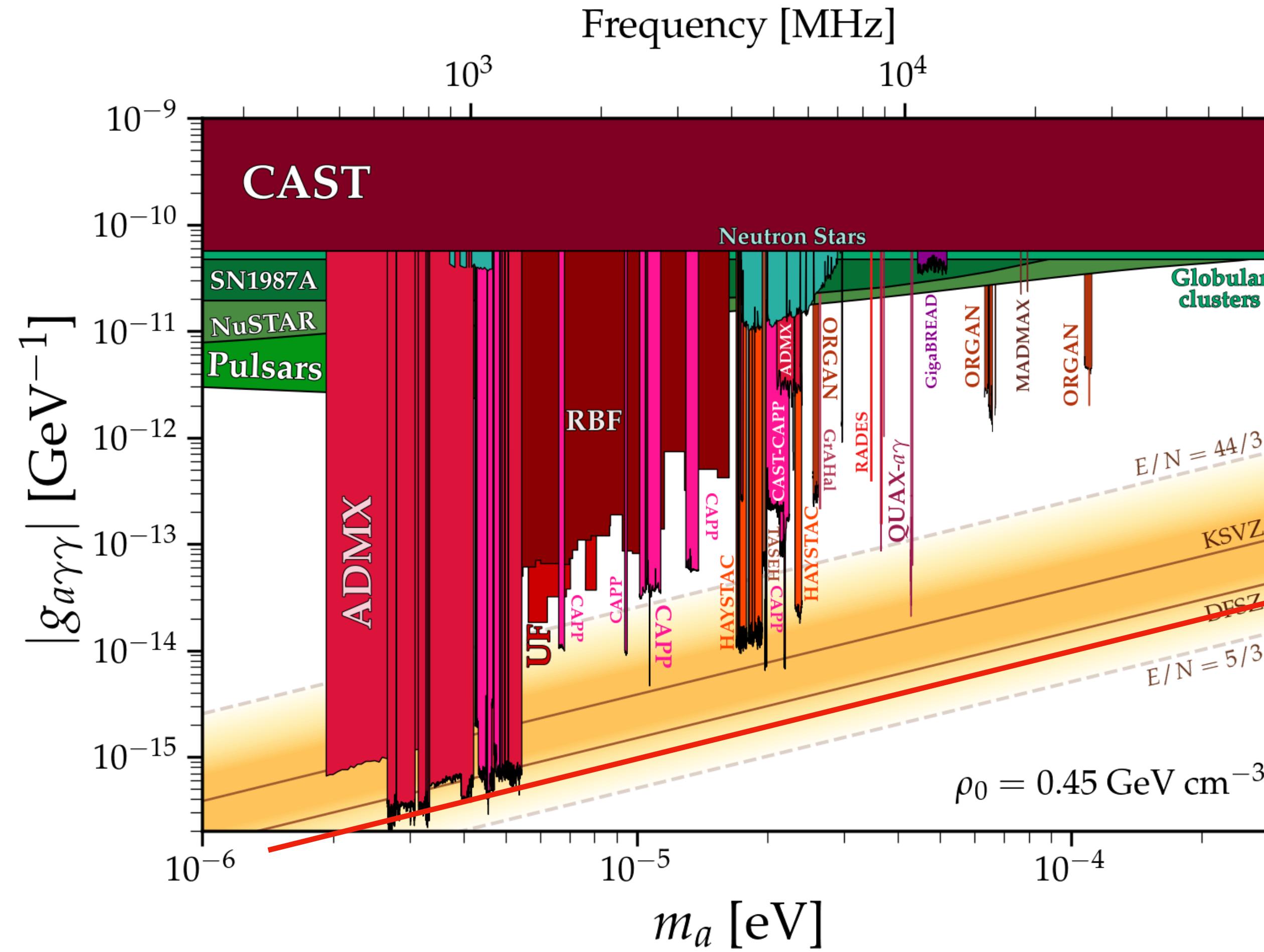
Axion interactions with gluons & photons

Low-energy axion-photon coupling:

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi f/k_G} \left(\frac{2k_F}{k_G} - 1.92(4) \right)$$

$k_G \in \mathbb{Z}, \quad \frac{2}{3}k_G + k_F \in \mathbb{Z}$

From mixing with pions


A minimal $|k_G| = 1$ is often theoretically favored (e.g., domain wall problem).

Then the **smallest** $g_{a\gamma\gamma}$ is when

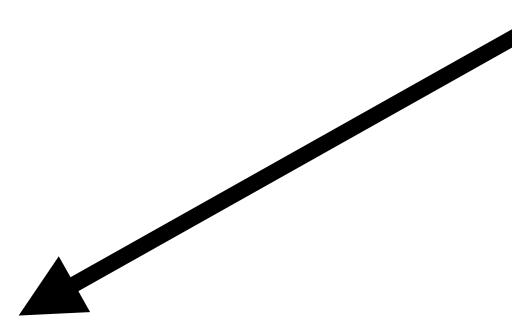
$$\frac{2k_F}{k_G} \equiv \frac{E}{N} = \frac{8}{3}.$$

a.k.a.
“DFSZ target”
but **not** linked
to DFSZ model

Experimental Target

Experiments measure
 $\rho_0 |g_{a\gamma\gamma}|^2$.

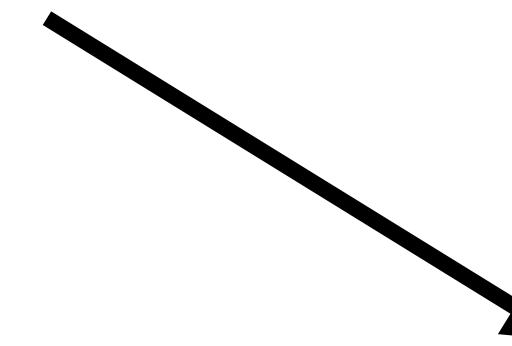
“DFSZ line” $E/N = 8/3$ **with**
 $\rho_0 = 0.45 \text{ GeV/cm}^3$ **dark**
matter density.


Credible estimates have large
error bars (e.g., de Salas &
Widmark '20), often centered
at **smaller** ρ_0 , so need to reach
lower in the plot.

My nightmare scenario is we
stop looking because “it’s
already ruled out” at **wrong** ρ_0 .

Source: Ciaran O’Hare, github

Some Ongoing Research Directions


Reducing axion isocurvature for an extra-dimensional, pre-inflation axion:
axion properties different today than during inflation.

Time-dependent mass, first-order phase transition, gravitational waves,

w/ Prish Chakraborty, Junyi Cheng, Zekai Wang
arXiv:2507.12519 and ongoing work

Time-dependent decay constant, moduli dynamics, reheating, ...

w/ Chandrika Chandrashekar (ongoing work)

And: chiral fermions \Rightarrow existence of light axions in string theory

Brief Advertisement

Local students in the audience, please consider taking my class:

Axion Physics

PHYSICS 253DR

Matthew Reece ▾

Class Number: 17222

Course ID: 226491

Consent: No Consent

Class Capacity: No Limit

2026 Spring

Full Term

1/26/2026 to 4/29/2026

S	M	T	W	Th	F	S
---	---	---	---	----	---	---

1:30pm - 2:45pm

Location: TBA3

View:

Description

Q Scores/Course Evaluations

Theory and phenomenology of axion fields. First, we review the QFT toolkit needed to understand the Strong CP problem and axions (e.g., instantons, theta terms, Chern-Simons terms, the chiral anomaly, the chiral Lagrangian). We will discuss axion models with an emphasis on the axion quality problem and extra-dimensional axions; phenomenological aspects of axion physics (axion cosmology, axion dark matter, laboratory searches, astrophysical constraints); and theoretical developments related to axions (anomaly inflow, generalized symmetries).

Recommended Prep:

Familiarity with quantum field theory and the Standard Model (e.g., Physics 253a, 253b and/or 254) is necessary. Some familiarity with cosmology would be useful, but we will review the basics.

Thank You!