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Point Source Effective Area

* Number of neutrinos observed N, given a flux of tau neutrinos ¢,,_:

dN s =@ -0) 0@F - ) &, _(t,E),7) Popye(t, &y, T, 11))
dt d, dQdA v\l €9, T) Fgphg(l, €4, T,

dt = differential time interval

d&, = differential neutrino energy

d() = differential solid angle

dA = differential area

7 = vector from neutrino source to Earth

i = vector from center of Earth to differential area
® = Heaviside step function

P,,s = probability of detection

* We define 1 as extending from the source so that 7 - ii is positive for below-horizon sources



Point Source Effective Area

* Av; fluxoriginating from a point source is modeled as:

$(,6,7) = [ A 6G = ) By, (6,6,
Integrate over dN yhs e N R
solid angle dt d€. dA = (T* ) u) G(T* ) u) S(tr gv; T'*) PObS(t’ gv; [ u))
%
S does not -
depend on dA

Point Source Effective Area: A(t,&,,7) = J dA, (f; - 1) O(7; - 1) Pyps(E, €y, 72, 1)
Ag

dNobs
dt d&,

=S(t,&,,7) AL, €y, T)



Acceptance

* For a diffuse, isotropic flux the flux does not depend on direction or time:

dNobs
dt d&,

=&, (&) (AQ)(t, E,)

Acceptance: (AQ)(6,€,) = f a0 j dA, (7 2) O(F - 1) Pypy(t, €y, F) )
aQ Ja,

* Acceptance is equivalent to integrating the point source effective over
solid angle



Neutrino Monte Carlo

Multiple Antenna Arrays on Mountains Tau Sensitivity

Monte Carlo which calculates the effective area of any configuration of
mountaintop phased radio arrays to point sources of neutrinos

Accounts for the effective areas of individual stations overlapping
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Geometry
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From each station, find where a g
cone in the source direction —+ 5 1991

intersects Earth n18s |

Union of all the areas = A,. Uniformly
sample tau exit points (ii;)

-10400 -10390 —-10380 -10370 -10400 -10390 -10380 -10370 -10400 -10390 —10380 —10370
Sinusoidal Projection x Sinusoidal Projection x Sinusoidal Projection x

We now have:




The Effect of Overlap

e Ifthe effective areas of individual stations do not overlap, then the overall
effective area scales linearly with the number of stations

e Ifoverlapispresent,thenA4, <n-A;
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Exit Probability and t Energy

e P, and the resulting t-lepton energies are sampled using look-up tables
generated using NuTauSim
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T-Lepton Decay

Decay distances are sampled from an exponential
distribution given the t lifetime and energy

Extensive air shower energies are sampled from L2
distributions generated with PYTHIA of
Decays which occur behind a station are = O5F
considered undetectable = o6
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Detection Probability

Peak electric field amplitude of each EAS is interpolated from look-up tables
generated using ZHAireS-RASPASS

Electric fields are converted to voltages given an antenna model

If the signal-to-noise ratio exceeds an input threshold, for any of the stations,
then an event has been detected = Njetected/N = Pgetect
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An Example

100 stations consisting of 10 phased
antennas

Spaced 3 km apart along same longitude, 4 oo
centered on location of BEACON Prototype 7 ”"Zf;“

3 km altitude
Facing East, 120° FoV
SNR = 5 trigger
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Instantaneous Effective Area

* BEACON has a large instantaneous effective area along the horizon

Instantaneous Effective Area
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Short-Duration Point Source Sensitivity

Short-Duration Point Source Sensitivity
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Day-Average Effective Area

* BEACON observes ~70% of the sky each day

Day-Average Effective Area
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Long-Duration Point Source Sensitivity

Sensitivity to an all-flavor dN,, /dE&,, «
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Diffuse Flux Sensitivity

1 BEACON Above Smooth-Earth 10-6

5-year Diffuse Flux Sensitivity
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Adding Topography to MARMOTS

*triangles

* Topography can help or hurt the effective area
not to scale

* Mountains and canyon walls provide
additional surface area for exiting tau-leptons

* Nearby features can block radio line-of-sight

* To model topography:

o Exit
& Decay

1. Triangulate the field-of-view of each station

2. Ateach triangle vertex, interpolate elevation
from the SRTM database given the
latitude/longitude

=» Triangulated mesh of the Earth’s surface
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Geometry: Topography

Just like before, a cone is directed from each station in the direction of the point
source

This time, we look for triangles that exist within the cone
A, is the sum of the areas of these triangles
Exit points are then uniformly sampled across these triangles

(r; - ;) is replaced with (7; - 11;), where 71; is the normal vector of the triangle on
which the tau exit point was sampled

n

=

)
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Exit Probability: Topography

From each exit point, we find where the particle
axis intersects the surface mesh in the
backwards direction

Intersections are found using a Bounding Volume
Hierarchy and the Moller-Trumbore intersection
algorithm

Intersections determine when the T is traversing
air versus rock

From the total grammage traversed, we can
determine Pqyit

Vertical Distance from Station (km)

Use intersections

with mesh to
determine grammage

® Station
o Exit
8 Decay

0

50 100 150

200 250

Horizontal Distance From Station (km)
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Detection Probability: Topography

* From each decay point, we find if the
particle axis intersects the surface mesh in
the forward direction

* |[f anintersection exists, then radio line-of-
sight is interrupted > event is not detected

* If nointersection is present, then we check
for a trigger

® Station
o Exit
& Decay
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Smooth Earth Topography

Effect of
Topography
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Adapting MARMOTS for Other Experiments

* Radio is only relevant during the calculation of P jetect, the last step of the
simulation = only small modifications needed for prior modules

* To calculate Pgetect fOr non-radio experiments using MARMOTS, we must
replace the radio emission models with models of Cherenkov emission,
scintillation, etc.

* |[f you’re interested in adapting MARMOTS:
https://github.com/beaconTau/marmots
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https://github.com/beaconTau/marmots

Summary

MARMOTS is a Monte Carlo originally developed to calculate the point source
effective area of an arbitrary configuration of elevated phased radio arrays

MARMOTS has recently been updated to include topography, which improves
the predicted effective area by a factor of 1 to 3 (energy dependent) at the
BEACON prototype site

MARMOTS can be adapted for use by non-radio experiments
To read more about MARMOTS, check out: arXiv:2504.13271
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