
Introduction to TAMBOSim
Software
Jeffrey Lazar
TAMBO Workshop
Lima, Peru
20 Oct., 2025

Outline

• Simulation overview
• TAMBOSim main results

• TAMBOSim, a practical introduction

2

3

Moving Past Initial Estimation

A Romero-Wolf, et al. (2020)

Updated Simulation

• Simplified geometry

• No treatment of energy losses
• Approximation of air-shower physics

τ± • Flexible geometry

• Full treatment of energy losses
• Air-shower simulation with CORSIKA 8

τ±

Initial Calculation

https://doi.org/10.48550/arXiv.2002.06475

Simulation Overview

4

Simulation regions

• Configurable simulation region is a box that
sits on top of the Earth
• Box length and width defined by input spline and

extends 5km below and 10 km above the center
of the detector

• The Earth composition is taken from the PREM

5

Neutrino Injection

6

Wikimedia commons

Select initial direction
uniformly on sphere

Sample point of closest approach
uniformly on disk perpendicular
to direction

Sample initial neutrino
energy from power law

Ei
ν

P(Ei
ν)

https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_6r.svg

Neutrino Injection

7

Ee
ν

Ei
ν

Use TauRunner to compute
neutrino energy at TAMBO
simulation region

Sample outgoing tau lepton
energy using inelasticity
distributions

Find interaction vertex by
sampling uniformly in
column depth

1 − y = Eτ /Eν

P(
E τ

)

• Many parameters can be adjusted in this, including:
• angular ranges;
• radius of the disk;
• minimum energy, maximum energy, and spectral index;
• size of simulation region; and
• cross section model

• Italicized parameters are critical; incorrect values will lead to undercounting
events or inefficient simulation

•N.B.: A cross section model is baked into the simulation at this point and
cannot be changed via reweighting*

8

Neutrino Injection

• Oooof!

9

Neutrino Injection

• Oooof!
• Now we have the energy and direction of the initial neutrino and charged tau

lepton and the interaction vertex so we can move on!

9

Neutrino Injection

Charged Lepton Propagation

• We use the PROPOSAL package to
propagate charged leptons from the
interaction vertex to the decay

• This follows physical rates and so no
reweighting is possible

10

Brem

Photo-nuclear

Extensive Air-Shower Development

• We use the CORSIKA8 package to
simulate the extensive air showers from
tau lepton decay products

• Once again, this follows physical rates
• Energy cut settings play a critical role in

getting our rates correct. This is an
ongoing area of study

11

• CORSIKA output is read out onto an
inclined plane that approximates the
mountain face

• This approximation only holds in limited
region around center of detector

• More sophisticated treatments are being
considered, but are unlikely to be
included in simulation for awhile

12

Extensive Air-Shower Development

Detector Response

• Particle are considered to have hit a detection
module if the point at which they intersect
the plane lies within module footprint

• This neglects 3D nature of module, which
may slightly undercount

• Realistic module triggering is currently being
fully implemented

13

Longitude72.3 ∘ W 72.29 ∘ W 72.28 ∘ W 72.27 ∘ W 72.26 ∘ W

Latitud
e

15.6 ∘ S
15.61 ∘ S
15.62 ∘ S
15.63 ∘ S
15.64 ∘ S 1 km

E𝜈 = 8.16 × 106 GeV
Es = 2.13 × 106 GeV

Elevatio
n[km]

2.5

3.0

3.5

First time [𝜇s]
0 2 4 6

Nparticle100 101 102 103

Event Weighting

• We often want to know the event rate for a physics case than the injected
case
• E.g. a different energy spectrum or cross section model

• Event weighting allows us to convert injected events to a physically relevant
rate

• In principle, this is easy, , but, as always, the devil is in the detailsw = pphys/pgen

14

Outline

• Simulation overview
• TAMBOSim main results

• TAMBOSim, a practical introduction

15

Flexible Simulation Framework

• Simulation carried
out in both realistic
and idealized value

16

Effective Area

• Aperture has correct energy scaling
• Simulation in comparable valley to

initial calculation gives comparable
rate (60%—70% difference)
• Ongoing efforts to track down

differences

• Aperture supersedes IceCube’s around
3 PeV and is 5x larger at 10 PeV

17

E𝜈 [GeV]106 107 108 109
Apertur

e[m2 sr]
100
101
102
103
104
105 Idealized valleyColca ValleyIceCube 𝜈𝜏50 m × (E𝜈/1 PeV)1.5

18

• Event from 8 PeV neutrino
which gives 2 PeV to shower

• Detector has ~300 modules
spaced by 150 m
• Larger than TAMBITO, but closer

to that than full array

Full Timing Information

18

• Event from 8 PeV neutrino
which gives 2 PeV to shower

• Detector has ~300 modules
spaced by 150 m
• Larger than TAMBITO, but closer

to that than full array

Full Timing Information

Outline

• Simulation overview
• TAMBOSim main results

• TAMBOSim, a practical introduction

19

TAMBOSim

• All of these steps have been
combined in the TAMBOSim
package which is available
through GitHub

• The repository is currently
public and can be accessed at

20

https://github.com/Harvard-Neutrino/TAMBO-MC/tree/main

TAMBOSim
Capabilities and limitations

• TAMBOSim was designed to simulate the main TAMBO physics case, and as
such that is the most ergonomic process

• Down-going cosmic-ray air showers can be trivially included by running
CORSIKA8 independently and feeding the output into the detector response
portion of the code

• More horizontal air showers that may skim the mountain require more care.
This is actively being developed

21

FLUKA Dependency

• First you must install FLUKA, which is used for hadronic interactions in
CORSIKA8

• This can be downloaded from the FLUKA website, but you must make an
account

• Installation directions for MacOS and Linux can be found here. Instructions for
installation on Windows can be found here, but beware

22

TAMBOSim Installation

https://fluka.cern/
https://fluka.cern/documentation/installation/fluka-linux-rpm-deb
https://fluka.cern/documentation/installation/fluka-flair-windows-wsl

Python Dependencies

• Python version requirements have not been rigorously tested, but there is
anecdotal success using 3.11.X and 3.12.X

• Set up a virtual environment by running `python -m venv </path/to/
tambo_venv>` and activate it by running `source </path/to/
tambo_venv>/bin/activate`

• Install required packages from PyPI with `pip install conan
particle==0.25.1 numpy proposal`

• Install TauRunner by running `git clone git@github.com:icecube/
TauRunner.git <path/to>/TauRunner; pip install <path/to>/
TauRunner`

23

TAMBOSim Installation

CORSIKA8 Dependency

• You must have a working version of CORSIKA8 installed
• The source code can be cloned from this repository

• N.B. You must clone using the `—recursive` flag!!!

• Compilation directions can be found here, and have been kind of reliable
• Anecdotally, there have been problems resolved by editing `corsika/tests/
framework/CMakeLists.txt` and commenting line 11, which pertains to
testProcessSequence

24

TAMBOSim Installation

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika
https://gitlab.iap.kit.edu/AirShowerPhysics/corsika#compiling-corsika-8

CORSIKA8 Application

• We have a custom CORSIKA8 application that ships with TAMBOSim
• Navigate to `</path/to/TAMBOSim>/src/corsika/` and run

``` 
mkdir build 

export CORSIKA_PREFIX=/path/to/corsika8/top/level/directory 
export CONAN_DEPENDENCIES=${CORSIKA_PREFIX}/corsika-install/lib/cmake/dependencies 
export FLUPRO=/path/to/fluka/top/level/directory 
export FLUFOR=<name of FORTRAN you built CORSIKA against, like gfortran> 
export WITH_FLUKA=ON 

cmake -DCMAKE_TOOLCHAIN_FILE=${CONAN_DEPENDENCIES}/conan_toolchain.cmake \ 
    -DCMAKE_PREFIX_PATH=${CONAN_DEPENDENCIES} \ 
    -DCMAKE_POLICY_DEFAULT_CMP0091=NEW \ 
    -DCMAKE_BUILD_TYPE=RelWithDebInfo \ 
    -Dcorsika_DIR=${CORSIKA_PREFIX}/corsika-build \ 
    -DWITH_FLUKA=ON \ 
    -S $PWD/source \ 
    -B $PWD/build 

cd build 
 
make 

```

25

TAMBOSim Installation

TAMBOSim Installation
Jump into Julia

• TAMBOSim is written in the Julia language, and as such, one must download
the Julia executable.

• We recommend Julia1.11 with installation via juliaup, see here for
instructions

26

https://julialang.org/install/

TAMBOSim Installation
Jump into Julia

• Now you need to set a few environmental variables
``` 
export TAMBOSIM_PATH=</path/to/TAMBOSim> 
export TAMBO_DATA_PATH=</path/to/data> 
```

• And don’t forget to set FLUPRO and FLUFOR if you are in a new session

• Now you can run `julia` to launch an interactive session

• Then you can run `using Pkg;
Pkg.develop(path=ENV[“TAMBOSIM_PATH”]); Pkg.resolve();
Pkg.instantiate()` and TAMBOSim will be installed

27

TAMBOSim Installation
Jump into Julia

• Now you need to set a few environmental variables
``` 
export TAMBOSIM_PATH=</path/to/TAMBOSim> 
export TAMBO_DATA_PATH=</path/to/data> 
```

• And don’t forget to set FLUPRO and FLUFOR if you are in a new session

• Now you can run `julia` to launch an interactive session

• Then you can run `using Pkg;
Pkg.develop(path=ENV[“TAMBOSIM_PATH”]); Pkg.resolve();
Pkg.instantiate()` and TAMBOSim will be installed

• Phew!!!

27

Basic Usage
Injection

• The basic injection can be run by doing
``` 
using Pkg 
Pkg.develop(path="$(ENV["TAMBOSIM_PATH"])") 
using Tambo 
sim = Simulation("$(ENV["TAMBOSIM_PATH"])/resources/
configuration_examples/larger_valley.toml") 
inject_ν!(sim, sim.config["injection"], 100, 925) 
```

28

Basic Usage
Injection

• The results are then saved in `sim.results[“injected_events"]`
• This has particle information at three points in time:

• initial_state: particle information at the surface of the Earth

• entry_state: particle information when the neutrino enters the
simulation box

• final_state: particle information for the final state charged lepton

• The oneweight is also stored so that it doesn’t need to be computed

29

Play with the output!
Injection

• Make a plot to confirm that the injected energy spectrum matches expectation
• Find out how that energy spectrum is shifted for when the neutrinos arrive at

the simulation region. Is there an angular dependence? Should we expect one?

30

Basic Usage
Tau Propagation

• Building off this, we can then propagate the resulting charged leptons by
running `propagate_τ!(sim, sim.config["proposal"], 925)`
• Warning! This will take a very long time the first time you run it. Maybe grab a coffee

• This will populate `sim.results[“proposal_events”]`
• This will have:

• propped_state: state of the tau lepton before decay

• decay_products: state of all decay products

31

Play with the Output

• What fraction of the tau lepton energy was lost in propagation?
• What fraction of the initial neutrino energy went to visible decay products?

32

Basic Usage
CORSIKA

• The individual decay products can then be propagated by running
`run_subshower!(sim, sim.config["corsika"], proposal_id,
decay_id, seed`, where proposal_id and decay_id are the indices of
the desired tau lepton and decay product respectively

• This can take awhile so run at your discretion

33

Advanced Usage
Snakemake

• Will has kindly written Snakelike interface that allows you to run all of these
steps automatically in sequence

• This is very useful for large simulation batches on distributed clusters
• There will be a session on this in the afternoon

34

Questions??

35

