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Moving Past Initial Estimation

A Romero-Wolf, et al. (2020)

Updated Simulation

• Simplified geometry 

• No treatment of  energy losses 
• Approximation of air-shower physics

τ± • Flexible geometry 

• Full treatment of  energy losses 
• Air-shower simulation with CORSIKA 8

τ±

Initial Calculation

https://doi.org/10.48550/arXiv.2002.06475


Simulation Overview
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Simulation regions

• Configurable simulation region is a box that 
sits on top of the Earth 
• Box length and width defined by input spline and 

extends 5km below and 10 km above the center 
of the detector 

• The Earth composition is taken from the PREM
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Neutrino Injection
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Wikimedia commons

Select initial direction 
uniformly on sphere

Sample point of closest approach 
uniformly on disk perpendicular 
to direction

Sample initial neutrino 
energy from power law

Ei
ν

P(Ei
ν)

https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_6r.svg


Neutrino Injection
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Ee
ν

Ei
ν

Use TauRunner to compute 
neutrino energy at TAMBO 
simulation region

Sample outgoing tau lepton 
energy using inelasticity 
distributions

Find interaction vertex by 
sampling uniformly in 
column depth

1 − y = Eτ /Eν

P(
E τ

)



• Many parameters can be adjusted in this, including: 
• angular ranges; 
• radius of the disk; 
• minimum energy, maximum energy, and spectral index; 
• size of simulation region; and 
• cross section model 

• Italicized parameters are critical; incorrect values will lead to undercounting 
events or inefficient simulation  

•N.B.: A cross section model is baked into the simulation at this point and 
cannot be changed via reweighting*
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Neutrino Injection



• Oooof!
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Neutrino Injection



• Oooof!
• Now we have the energy and direction of the initial neutrino and charged tau 

lepton and the interaction vertex so we can move on!
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Neutrino Injection



Charged Lepton Propagation

• We use the PROPOSAL package to 
propagate charged leptons from the 
interaction vertex to the decay 

• This follows physical rates and so no 
reweighting is possible
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Brem

Photo-nuclear



Extensive Air-Shower Development

• We use the CORSIKA8 package to 
simulate the extensive air showers from 
tau lepton decay products 

• Once again, this follows physical rates 
• Energy cut settings play a critical role in 

getting our rates correct. This is an 
ongoing area of study
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• CORSIKA output is read out onto an 
inclined plane that approximates the 
mountain face 

• This approximation only holds in limited 
region around center of detector 

• More sophisticated treatments are being 
considered, but are unlikely to be 
included in simulation for awhile
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Extensive Air-Shower Development



Detector Response

• Particle are considered to have hit a detection 
module if the point at which they intersect 
the plane lies within module footprint 

• This neglects 3D nature of module, which 
may slightly undercount  

• Realistic module triggering is currently being 
fully implemented
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Event Weighting

• We often want to know the event rate for a physics case than the injected 
case 
• E.g. a different energy spectrum or cross section model 

• Event weighting allows us to convert injected events to a physically relevant 
rate 

• In principle, this is easy, , but, as always, the devil is in the detailsw = pphys/pgen
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Flexible Simulation Framework

• Simulation carried 
out in both realistic 
and idealized value
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Effective Area

• Aperture has correct energy scaling 
• Simulation in comparable valley to 

initial calculation gives comparable 
rate (60%—70% difference) 
• Ongoing efforts to track down 

differences 

• Aperture supersedes IceCube’s around 
3 PeV and is 5x larger at 10 PeV
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• Event from 8 PeV neutrino 
which gives 2 PeV to shower 

• Detector has ~300 modules 
spaced by 150 m 
• Larger than TAMBITO, but closer 

to that than full array

Full Timing Information
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• Event from 8 PeV neutrino 
which gives 2 PeV to shower 

• Detector has ~300 modules 
spaced by 150 m 
• Larger than TAMBITO, but closer 

to that than full array

Full Timing Information
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TAMBOSim

• All of these steps have been 
combined in the TAMBOSim 
package which is available 
through GitHub 

• The repository is currently 
public and can be accessed at
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https://github.com/Harvard-Neutrino/TAMBO-MC/tree/main


TAMBOSim
Capabilities and limitations

• TAMBOSim was designed to simulate the main TAMBO physics case, and as 
such that is the most ergonomic process 

• Down-going cosmic-ray air showers can be trivially included by running 
CORSIKA8 independently and feeding the output into the detector response 
portion of the code 

• More horizontal air showers that may skim the mountain require more care. 
This is actively being developed
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FLUKA Dependency

• First you must install FLUKA, which is used for hadronic interactions in 
CORSIKA8 

• This can be downloaded from the FLUKA website, but you must make an 
account 

• Installation directions for MacOS and Linux can be found here. Instructions for 
installation on Windows can be found here, but beware
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TAMBOSim Installation

https://fluka.cern/
https://fluka.cern/documentation/installation/fluka-linux-rpm-deb
https://fluka.cern/documentation/installation/fluka-flair-windows-wsl


Python Dependencies

• Python version requirements have not been rigorously tested, but there is 
anecdotal success using 3.11.X and 3.12.X 

• Set up a virtual environment by running `python -m venv </path/to/
tambo_venv>` and activate it by running `source </path/to/
tambo_venv>/bin/activate` 

• Install required packages from PyPI with `pip install conan 
particle==0.25.1 numpy proposal` 

• Install TauRunner by running `git clone git@github.com:icecube/
TauRunner.git <path/to>/TauRunner; pip install <path/to>/
TauRunner`
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TAMBOSim Installation



CORSIKA8 Dependency

• You must have a working version of CORSIKA8 installed 
• The source code can be cloned from this repository 

• N.B. You must clone using the `—recursive` flag!!! 

• Compilation directions can be found here, and have been kind of reliable 
• Anecdotally, there have been problems resolved by editing `corsika/tests/
framework/CMakeLists.txt` and commenting line 11, which pertains to 
testProcessSequence
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TAMBOSim Installation

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika
https://gitlab.iap.kit.edu/AirShowerPhysics/corsika#compiling-corsika-8


CORSIKA8 Application

• We have a custom CORSIKA8 application that ships with TAMBOSim 
• Navigate to `</path/to/TAMBOSim>/src/corsika/` and run 

``` 
mkdir build 

export CORSIKA_PREFIX=/path/to/corsika8/top/level/directory 
export CONAN_DEPENDENCIES=${CORSIKA_PREFIX}/corsika-install/lib/cmake/dependencies 
export FLUPRO=/path/to/fluka/top/level/directory 
export FLUFOR=<name of FORTRAN you built CORSIKA against, like gfortran> 
export WITH_FLUKA=ON 

cmake -DCMAKE_TOOLCHAIN_FILE=${CONAN_DEPENDENCIES}/conan_toolchain.cmake \ 
    -DCMAKE_PREFIX_PATH=${CONAN_DEPENDENCIES} \ 
    -DCMAKE_POLICY_DEFAULT_CMP0091=NEW \ 
    -DCMAKE_BUILD_TYPE=RelWithDebInfo \ 
    -Dcorsika_DIR=${CORSIKA_PREFIX}/corsika-build \ 
    -DWITH_FLUKA=ON \ 
    -S $PWD/source \ 
    -B $PWD/build 

cd build 
 
make 

```
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TAMBOSim Installation



TAMBOSim Installation
Jump into Julia

• TAMBOSim is written in the Julia language, and as such, one must download 
the Julia executable. 

• We recommend Julia1.11 with installation via juliaup, see here for 
instructions
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https://julialang.org/install/


TAMBOSim Installation
Jump into Julia

• Now you need to set a few environmental variables 
``` 
export TAMBOSIM_PATH=</path/to/TAMBOSim> 
export TAMBO_DATA_PATH=</path/to/data> 
```

• And don’t forget to set FLUPRO and FLUFOR if you are in a new session

• Now you can run `julia`  to launch an interactive session

• Then you can run `using Pkg; 
Pkg.develop(path=ENV[“TAMBOSIM_PATH”]); Pkg.resolve(); 
Pkg.instantiate()` and TAMBOSim will be installed
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TAMBOSim Installation
Jump into Julia

• Now you need to set a few environmental variables 
``` 
export TAMBOSIM_PATH=</path/to/TAMBOSim> 
export TAMBO_DATA_PATH=</path/to/data> 
```

• And don’t forget to set FLUPRO and FLUFOR if you are in a new session

• Now you can run `julia`  to launch an interactive session

• Then you can run `using Pkg; 
Pkg.develop(path=ENV[“TAMBOSIM_PATH”]); Pkg.resolve(); 
Pkg.instantiate()` and TAMBOSim will be installed

• Phew!!!
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Basic Usage
Injection

• The basic injection can be run by doing 
``` 
using Pkg 
Pkg.develop(path="$(ENV["TAMBOSIM_PATH"])") 
using Tambo 
sim = Simulation("$(ENV["TAMBOSIM_PATH"])/resources/
configuration_examples/larger_valley.toml") 
inject_ν!(sim, sim.config["injection"], 100, 925) 
```
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Basic Usage
Injection

• The results are then saved in `sim.results[“injected_events"]` 
• This has particle information at three points in time: 

• initial_state: particle information at the surface of the Earth 

• entry_state: particle information when the neutrino enters the 
simulation box 

• final_state: particle information for the final state charged lepton 

• The oneweight is also stored so that it doesn’t need to be computed
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Play with the output!
Injection

• Make a plot to confirm that the injected energy spectrum matches expectation 
• Find out how that energy spectrum is shifted for when the neutrinos arrive at 

the simulation region. Is there an angular dependence? Should we expect one?
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Basic Usage
Tau Propagation

• Building off this, we can then propagate the resulting charged leptons by 
running `propagate_τ!(sim, sim.config["proposal"], 925)` 
• Warning! This will take a very long time the first time you run it. Maybe grab a coffee 

• This will populate `sim.results[“proposal_events”]` 
• This will have: 

• propped_state: state of the tau lepton before decay 

• decay_products: state of all decay products
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Play with the Output

• What fraction of the tau lepton energy was lost in propagation? 
• What fraction of the initial neutrino energy went to visible decay products?
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Basic Usage
CORSIKA

• The individual decay products can then be propagated by running 
`run_subshower!(sim, sim.config["corsika"], proposal_id, 
decay_id, seed`, where proposal_id and decay_id are the indices of 
the desired tau lepton and decay product respectively 

• This can take awhile so run at your discretion
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Advanced Usage
Snakemake

• Will has kindly written Snakelike interface that allows you to run all of these 
steps automatically in sequence 

• This is very useful for large simulation batches on distributed clusters 
• There will be a session on this in the afternoon
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Questions??
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