TAMBO touch base meeting Oct. 18, 2022

Earth-Skimming neutrinos at the Pierre Auger Observatory

Jaime Alvarez-Muñiz

The Pierre Auger Observatory Malargüe, Mendoza (Argentina)

Largest Ultrahigh Energy (E > 10^{17} eV) Cosmic-Ray detector in the world

70

- SD1500 = Surface Detector array of 1600 water Cherenkov stations (~ 3000 km²)
- SD750 = 61 water Cherenkov stations (~ 27 km²)
- **FD** = 4 Fluorescence (24 + 3) detectors

Hybrid detection of UHECR-induced showers in Auger

u[±]

primary Cosmic-Ray

1.5 km

Cosmic Ray- induced atmospheric shower

Detectors of fluorescence or Cherenkov light

Array of particle detectors

e+

Building the Surface Detector (SD) of the Pierre Auger Observatory

Design targets of SD:

- Self-contained & autonomous Surface Detector stations
- ✓ In-situ calibration of SD stations (by cosmic-ray muons)
- ✓ 100% duty cycle
- ✓ Measurement of time structure of signals of shower front
- ✓ Sensitivity to showers arriving at large zenith angles

Pierre Auger, NIMA 798 (2015) 172-213

Timeline

- Conceived in 1991
- Site selection 1995
- Engineering Array 2001
- Construction started 2002
- First data 2004. First physics 2005
- Full Auger construction ended 2008
- Taking data continuously

with full Auger for the last 14 years

Water-Cherenkov stations

• **Photons** can also convert in water and produce a shower inside the tank

Cylind polyeth (tough)	rical ylene tank	Colored blend blend landso	beige to with cape		3.6 m diameter, 1.2 m height							
530 kg + 12 wate	2 tons of er	Three 9-ir looking do	nch PMT wnwards		Reflect Surfac	tive inner te (liner)						
Self-pov 1solar pan batter	vered el + 12 V ries	Power cons 10 W	sumption: atts		Wireless communication with central data acquisition system							
	GPS rec	ceiver	Elect protec aluminu	roi cte um	nics d by dome							

Calibration of Water-Cherenkov stations

There are **1600 stations in the SD1500** that behave slightly different from each other.

Calibration

Cherenkov light is measured in units of the signal produced by a vertical & central through-going muon, a **vertical-equivalent muon (VEM)**.

The **goal of SD calibration** is to measure the value of 1 VEM in "electronic" units.

→ Conversion to units of VEM needed to provide a common reference level

Atmospheric muons pass through each SD detector at a rate 2500 Hz and produce a **peak in the charge histogram** collected every minute.

The peak of the charge distribution Q^{peak}VEM is 1.09 VEM and provides the conversion.

Charge histogram (in black) from an SD station, triggered by a 3-fold coincidence between all 3 PMTs.

X. Bertou et al., NIMA **568** (2006) 839–846

Search for UHE neutrinos with Auger SD1500

Inclined showers (θ > 60 deg.) are the key to identification of UHE neutrinos

(Background) Cosmic Ray

- Protons & nuclei initiate inclined showers high in the atmosphere => Shower front at ground mainly composed of muons (electromag. component absorbed in atmosphere).
- **Neutrinos** can initiate "deep" showers close to ground => Shower front at ground: electromag. + muonic components

In Auger: Neutrino signature \rightarrow **inclined showers** that develop close to ground

In TAMBO: Neutrino signature \rightarrow more vertical showers (from other side of valley) $_{\circ}$

Selection of inclined showers: 3 observables

(3) Reconstructed θ > 60 deg

Identifying neutrinos in Auger data

Water Cherenkov stations do NOT efficiently separate muons from electrons but, the **electromagnetic component induces extended signals in time** in the FADC traces

- ⇒ induce <u>Time-over-Threshold</u>(ToT) triggers in the SD stations and/or
- ⇒ have <u>large Area-over-Peak (AoP)</u> value (AoP ~ 1 muonic front)

Definition of Area-over-Peak (AoP)

Searching for neutrinos ⇒ Searching for inclined showers with stations with large values of Area-over-Peak

Sensitivity to all flavours & channels in Auger

Data unblinding: Earth-Skimming channel

Distribution of mean Area-over-Peak <AoP> in highly inclined events

No neutrino candidates in the Earth-Skimming channel Large neutrino-selection efficiency => sensitivity dominated by exposure, NOT by background

Background (UHECR) inclined event in data

Monte Carlo simulation Earth-Skimming neutrino

- Black arrow parallel to projection of shower axis on ground
- Numbers on top of each station indicate <AoP> the discriminating observable for Earth-Skimming v

- No neutrino candidates in data Jan 04 Dec 21 => restrictive upper limits to neutrino flux in the cosmic particle beam at EeV energies.
- Very small background to v identification => Auger sensitivity limited by exposure
- UHEv are produced in interactions of UHECR ⇒ Auger limits constrain models assuming pure proton primary cosmic beam

Role of topography at Auger site

Digital Elevation map of the Auger site

- Topography affects both the Earth-Skiming (90° 95°) channel and to downward-going (88° – 90°) neutrinos
- Topography contributes (roughly) with 17% to the TOTAL neutrino event rate (assuming an E⁻² flux)

Length in rock (km) vs direction for observers at different locations in the SD1500

Stability of the SD1500 array of Pierre Auger

Effective area vs time for different neutrino channels

Pierre Auger JCAP **11** (2019) 004

Sky coverage of Auger SD1500

Instantaneous sky coverage

Auger "sees" ~ 30% of the sky at each instant of time in the zenith angle ranges where sensitivity to UHE neutrinos is largest.

Covering all right ascensions (due to 100% duty cycle)

Time per day (hr) a source is visible vs declination

Sensitivity to UHE neutrinos in declination ranges between **close to South Celestial Pole to 60 deg North**

Pierre Auger JCAP **11** (2019) 004

Follow-up of GW170817 in neutrinos Binary Neutron Star Merger + short GRB

The NS-NS merger was in an **optimal position** for the detection of UHE tau neutrinos from Auger at the instant of emission of GW170817

Limits to v from Binary NS-NS event GW170817: **ANTARES, Auger & IceCube**

GW170817 Neutrino limits (fluence per flavor: $\nu_x + \overline{\nu}_x$)

E/GeV

ANTARES, IceCube, Auger, LIGO & Virgo Astrophys. J. Lett. 850, L35 (2017)

 10^{11}

Auger

Kimura et al.

EE moderate

Kimura et al

prompt

Fang & Metzger

30 days

 10^{9}

Fang &

Metzger 3 days

 10^{10}

0°

Auger

Multimessenger Astronomy at UHE with Auger

22 Sep. 2017 High-Energy v discovered by IceCube directionally coincident with gamma-ray blazar (AGN) TXS 0506+056. First identified source of high-energy astrophysical neutrinos

IceCube Collab. et al. Science **361**, 146 (2018)

No candidate neutrinos from direction of TXS (a) EeV energy in Auger

First upper limits to the UHE neutrino & photon flux from an identified neutrino source

Pierre Auger. Astrophys. J., **902**, 105 (2020) 21

Extension of the Auger Observatory: AugerPrime

Instrument water-Cherenkov stations with $\sim 4 \text{ m}^2$ scintillators & antennas on top

Improve composition determination on shower-by-shower basis (the enhanced discrimination of muon & electromagnetic component should benefit v detection)

Timeline: Data taking with upgraded array until 2025 (possibly until 2030)

Thank you for the invitation and for your attention

Trigger of the SD1500

Inclined and young shower cuts

Earth-skimming analysis $90^{\circ} < \theta < 95^{\circ}$

- Inclined showers:
 - L/W > 5
 - <V> ∈[0.29, 0.31] m ns⁻¹
 - RMS(V) < 0.08 m ns</p>
 - $\theta_{rec} > 75^{\circ}$
 - If N_{st} = 3: only config. 1
- · Young showers:
 - <AoP> > 1.83

Downward-going high analysis $75^{\circ} < \theta < 90^{\circ}$

- Inclined showers:
 - L/W > 3

٠

- <V> < 0.313 m ns⁻¹
- RMS(V)/<V> < 0.08</p>
- $\theta_{rec} > 75^{\circ}$
- Young showers:
 - Fisher cut

1	2	3	4	5	6	7

Exposure of SD1500: 1 Jan 2004 – 31 Dec 2021

Pierre Auger

JCAP **10** (2019) 022

• Auger at UHECR 2022 L'Aquila (Italy)

Expected neutrino event rate for selected models

Instantaneous effective area A_{eff}: sensitivity to transient sources

$$\dot{N}_{\nu} = \int d\Omega \int_{0}^{\infty} dE A_{\mathrm{eff}}(E, \Omega) \times F_{\nu}(E_{\nu}, \Omega)$$

Large area of SD of Auger => unrivalled sensitivity to transient point-like sources at **EeV** (as long as source is located in sky in the FoV of Earth-Skimming channel).

Limits to point-like & steady neutrino sources

Broad range in declination where n can be efficiently identified with Auger: two "sweet" spots around declinations -55° and +55°

IceCube, Astrophys.J. 835, 151 (2017) ANTARES, PRD 96, 082001 (2017)

Landscape of operating and planned experiments sensitive to tau neutrinos

"*Tau Neutrinos in the Next Decade: from GeV to EeV*", Journal of Physics G: Nuclear and Particle Physics 49, 11 (2022)

			Fla	vor	Technique			Neutrino Target				Geometry							
Experiments	Phase & Online Date	Energy Range	Site	Tau	All Flavor	Optical / UV	Radio	Showers	H ₂ 0	Atmosphere	Earth's limb	Topography	Lunar Regolith	Embedded	Planar Arrays	Valley	Mountains	Balloon	Satellite
IceCube	2010	TeV-EeV	South Pole		\checkmark	\checkmark			\checkmark					\checkmark					
KM3NeT	2021	TeV-PeV	Mediteranean		\checkmark	\checkmark			\checkmark					\checkmark					
Baikal-GVD	2021	TeV-PeV	Lake Baikal		\checkmark	\checkmark			\checkmark					\checkmark					
P-ONE	2020	TeV-PeV	Pacific Ocean		\checkmark	\checkmark			\checkmark					\checkmark					
IceCube-Gen2	2030+	TeV-EeV	South Pole		\checkmark	\checkmark	\checkmark		\checkmark					\checkmark					
ARIANNA	2014	>30 PeV	Moore's Bay		\checkmark		\checkmark		\checkmark					\checkmark					
ARA	2011	>30 PeV	South Pole		\checkmark		\checkmark		\checkmark					\checkmark					
RNO-G	2021	>30 PeV	Greenland		\checkmark		\checkmark		\checkmark					\checkmark					
RET-N	2024	PeV-EeV	Antarctica		\checkmark		\checkmark		\checkmark					\checkmark					
ANITA	2008,2014,2016	EeV	Antarctica	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark							\checkmark	
PUEO	2024	EeV	Antarctica	\checkmark	\checkmark		\checkmark		\checkmark		\checkmark							\checkmark	
GRAND	2020	EeV	China / Worldwide	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark			\checkmark		\checkmark		
BEACON	2018	EeV	CA, USA/ Worldwide	\checkmark			\checkmark				\checkmark	\checkmark					\checkmark		
TAROGE-M	2018	EeV	Antarctica	\checkmark			\checkmark				\checkmark	\checkmark					\checkmark		
SKA	2029	>100 EeV	Australia		\checkmark		\checkmark						\checkmark		\checkmark				
Trinity	2022	PeV-EeV	Utah, USA	\checkmark		\checkmark					\checkmark						\checkmark		
POEMMA		>20 PeV	Satellite	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark								\checkmark
EUSO-SPB	2022	EeV	New Zealand	\checkmark		\checkmark					\checkmark							\checkmark	
Pierre Auger	2008	EeV	Argentina	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark			\checkmark				
AugerPrime	2022	EeV	Argentina	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark				
Telescope Array	2008	EeV	Utah, USA	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark				
TAx4		EeV	Utah, USA	\checkmark	\checkmark			\checkmark											
TAMBO	2025-2026	PeV-EeV	Peru	\checkmark				\checkmark				\checkmark				\checkmark			

Operational		Date full operations began
Prototype	Date pi	rotoype operations began or begin
Planning		Projected full operations

Expected differential 90% CL sensitivity to the diffuse neutrino flux of several experiments

"Tau Neutrinos in the Next Decade: from GeV to EeV", Journal of Physics G: Nuclear and Particle Physics **49**, 11 (2022)

Pierre Auger UHE neutrino & photon limits

"Ultra-High Energy Cosmic Rays (UHECRs): The Intersection of the Cosmic and Energy Frontiers" Snowmass 2021, submitted to Astropart. Phys.

⁽θ,φ)=(63.3, 148.9) deg

Monitoring & maintenance of the SD array

- The **SD data-taking runs non-stop** with almost no intervention.
 - Duty cycle > 95% in the last 15 years
- The operation of the whole SD is **monitored online**.
 - Different **alarms** are set on various parameters, if an urgent problem is detected the local staff intervenes for maintenance service.
 - Detectors are exposed to **severe environmental conditions**: thermal variations, humidity, wind, salinity, dust, flooding, ground erosion, damages caused by local fauna and vandalism or theft.

Detectors out of operation:

- Black Tanks (have not sent any trigger in the last 24 hours)
- Grey Tanks (only one PMT out of the 3 is working).
- A very large number of Black Tanks is due to general problems of power or communication.
- To keep the number of Black + Gray Tanks around 40-50, about 3 field trips per week are required to some of them, and periodical maintenance trips, especially for PMTs, are conducted.