
Jeffrey Lazar
TAMBO Touch Base
Universidad Nacional de San
Agustín de Arequipa
18 Oct. 2022

Update on the
TAMBO Monte
Carlo Simulation

1

What we’re after

2

Total number of events in 3 years: Total number of events
expected by extrapolating the high-energy flux measured
by IceCube. Reproduced from DOI:10.1086/423124

Fractional acceptance of events as a function of
arrival direction: Reproduced from
DOI:10.1086/423124

True rates Detector response

Moving past the first pass

3

• Simplified geometry

• No treatment of energy losses

• Approximation of air-shower

physics

τ±
• Realistic

• Full treatment of energy losses

• (Less) approximation of air-

shower physics. Eventually few
simulation

τ±

Monte Carlo Simulation: an overview

4

Initial neutrino injection: Select initial
neutrino properties, i.e. energy, direction,
interaction vertex, etc.

Charged lepton propagation: Propagate
outgoing charged lepton, accounting for
energy losses and decay, to find decay point

Air-shower simulation: Model shower
development from lepton decay

Detector response: Simulate internal
hardware to model what we will see

Event weighting: Remove unphysical
remnants from selection of initial neutrino
properties

ντ

τ−

Initial Neutrino Injection

5

Charged Lepton Propagation

• PROPOSAL is a Monte Carlo framework
for propagating charged leptons and
gamma rays

• Most up-to-date cross sections and for
interaction and decay

• C++ and Python interfaces. Sometimes
can be installed with pip

6

Air-Shower Simulation

• CORSIKA is a MC-based software for
calculating air-shower

• FORTRAN-based code, c++ hopefully
coming soon

• Currently working on an approximation
that treats the mountain as a plane

• We will need to simulate a large
CORSIKA library for a fully accurate
simulation

7

7.7420

Detector Response

• Geant4 is a toolkit for simulating the
passage of particles through matter

• Detailed treatment of internal detector
geometries

• Reference for LHC experiments

• C++ interface

8

Event Weighting

• We generate according to a distribution
which may not be physical

• For example, we may sample event
uniformly on a sphere but attenuation
makes the unlikely

• Remove “unphysicalness” reweighting
by removing generation dependence

• Also allows simulation to be applied to
different fluxes, cross section models,
etc.

9

1
wgen

= Ngen
1

ΩgenAgen
×

ρgen(ℓ)
Xgen

×
1

σtot(E)
∂σ
∂y

(E, y) ×
Φgen(E)

∫ Φgen dE

wphys = ∑
{gen} (

Xphys NA

Mtarget
×

ρphys(ℓ)
Xcol

phys
×

∂σ
∂y

× Φphys(E, θ))
physical distribution

× wgen

Python-based package for simulating propagation: Uses MC
approach to propagate tau neutrinos including previously neglected
effects

ντ

Python, C++, FORTRAN

• None of them :-)

• Currently being designed in the Julia language

• Initial injection is purely in Julia, and most other things rely on Julia-based
interface to other codes

10

Which one should we use ?

Julia Language
• Relatively new language

optimized for data analysis

• JIT compilation allows for a nice
combination of interactive coding
and speed

• Can be used as scripts, in a
REPL, or in Jupyter notebooks

11

C

Timing comparison for various languages: Timing comparisons on
a variety of benchmarks normalized to their time in C. Note, compile
time is not included for Julia

Julia Python

100

101

102

103

104

12

Where do we stand ?

Where do we stand ?
Done (ish)

13

Doing TODO

Initial neutrino injection

Charged lepton
propagation

Air-shower simulation

Event weighting

Detector response

• If we can finish the air-shower simulation, we can do a first round of simulation

• This will allow us to assess detector needs, optimize configurations, and
determine feasibility of sites

A GIF for the End :-)

14

We would love your help !

• We are close to pushing past a major milestone and producing realistic
simulation at a site of interest

• Beyond this, we will need to hone and perfect the particle physics and
detector simulations

• Plenty to do. Code needs to be tested, bugs needs to be found, and large
simulation needs to be run

• All skill levels welcome and no familiarity with Julia necessary :-)

15

